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Chapter 1

Introduction

1.1 JUNO Mission

JUNO is a NASA spacecraft dedicated to the investigation of Jupiter’s interior, atmo-

sphere, and magnetospheric environment from a polar, highly elliptical orbit. This trajec-

tory creates short perijove windows with rapidly changing observation geometry, separated

by long arcs far from the planet. An overview of the orbit evolution and close-approach

passes is shown in Fig. 1.1.

JUNO is spin-stabilized, which simplifies attitude dynamics but introduces image mo-

tion for instruments integrating during spacecraft rotation. The original mission baseline

envisioned two initial 53-day orbits followed by a period reduction to 14 days. However,

due to concerns in the main-engine feed system (check-valve behavior), this maneuver was

not executed and the mission remained in the longer-period orbit, reducing operational

risk while preserving the perijove science geometry [1].

Following completion of the prime objectives, NASA approved an extended mission

in which the orbit continues to evolve and enables additional science, including targeted

encounters in the Jovian system [2, 3]. At end-of-mission, the spacecraft is planned to be

disposed by a controlled entry into Jupiter’s atmosphere to satisfy planetary protection

requirements [2].

The spacecraft carries four DTU Advanced Stellar Compass (ASC) star trackers, pri-

marily providing precise attitude information to the magnetometer system [4]. During
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Overview of JUNO’s orbit evolution and perijove passes around Jupiter (prime
and extended mission). [2]

selected perijove intervals, these cameras are commanded to acquire imagery containing

Jupiter’s limb. Although the ASC is not designed as a science imager, these horizon views

provide insights about Jupiter’s atmosphere.

1.2 Problem statement

The ASC does not output a fully synchronous frame. Due to the staggered readout

scheme (Section 2.1), each acquisition contains two interleaved fields captured at different

times, which introduces intra-frame misalignment during spacecraft spin. In addition,

the orbit environment and sensor characteristics generate strong outliers and background

structure that bias direct feature extraction.

The dataset therefore presents two coupled challenges. First, the raw frames must

be converted into a calibrated consistent representation. Second, the signals of interest (a

short limb arc and a sparse star field) must be extracted robustly. The required corrections

and their implementation are treated in Chapter 3.

1.3 Research goals

The assignment specification was intentionally open-ended. The work therefore focuses

on the aspects of the dataset that are most relevant for geometric reconstruction and

atmospheric interpretation. The objectives are:

• Construct an image processing sequence that converts raw ASC acquisitions into

Page 2 of 140



CHAPTER 1. INTRODUCTION 3

calibrated, denoised, and geometrically corrected frames (Chapter 3).

• Compensate the odd/even readout misalignment by despinning and merging both

fields into a single consistent image (Section 3.3).

• Extract Jupiter’s apparent horizon from the corrected frames and validate the result

against a SPICE-derived reference (Chapter 4).

• Detect and match background stars to an inertial catalogue to estimate camera point-

ing from the same frames (Chapter 5).

• Combine limb geometry and star-derived attitude to recover an image-constrained

spacecraft position estimate, and derive basic horizon-referenced atmospheric observ-

ables where supported by the data (Chapter 6).

Page 3 of 140



Chapter 2

Background and Data

2.1 Juno ASC’s camera

The Advanced Stellar Compass (ASC) is an instrument providing attitude measure-

ments to Juno’s magnetometers. It consists of two pairs of Camera Head Units (CHUs)

placed at the end of one of Juno’s 3 solar arrays, 8 and 10 meters from the spacecraft’s

body to mitigate electromagnetic disturbance. Each CHU is a star tracker monochrome

8-bit camera with a 19°x13.5° field of view and a 752x580 pixel CCD sensor. For optimal

performance in a high radiation environment, the sensor lowers its integration time by

using the built-in electronic shutter. The full integration time is divided evenly between

two image fields : the odd-numbered rows are read out in the first field, followed by the

even rows in the second field after a fixed delay ∆t. Due to Juno’s spin during this delay,

the result consists of two clearly misaligned row sets, which must be accounted for during

image processing [4].

In addition to the odd-even row misalignment, the ASC operates under low-light con-

ditions with short exposure times, making the images inherently photon-limited. As a

result, shot noise and readout noise contribute significantly to the background intensity

fluctuations. This noise floor noticeably limits the detectability of faint stars.

Furthermore, the sensor is affected by spatial non-uniformities, including pixel-to-pixel

gain variations and fixed-pattern noise. These artefacts can introduce bias in local back-

ground estimation and star flux measurements. These effects should likewise be considered

4



CHAPTER 2. BACKGROUND AND DATA 5

Figure 2.1: CHU disposition on Juno [5]

Figure 2.2: Principle of CCD op-
eration. Photosensitive integration
layer in white, shuttered layer in
gray. Sketch shows integration of
first image field [6]

during processing (e.g. using reference images).

Scenes containing bright objects, such as Jupiter or its illuminated limb, can induce

intense stray light and scattering within the lens system. This results in extended intensity

gradients and halo structures that are not associated with point sources. Such features

distort the local background and can suppress or falsely trigger star detections if not

explicitly masked.

Finally, residual geometric distortions introduced by the lens lead to systematic devi-

ations from an ideal pinhole camera assumption.

2.2 Dataset description

All of this paper’s work and conclusions are derived from 6 images captured by the

ASC’s Camera Head Unit D. They were all taken during the rare perijove passage (when

the orbit has the lowest altitude) over Jupiter’s North Pole. During this window, the Jovian

horizon is observed at a very high slant angle, providing imaging of the upper atmosphere

for a short time, before returning to deep space star field observation.

The dataset consists of 3 pairs of images taken 30 seconds apart. Within a pair of

images, they are are taken exactly 500ms apart. Due to the spacecraft’s high speed and

rotation, the observation geometry drastically changes from one pair to the next. All ac-

Page 5 of 140



CHAPTER 2. BACKGROUND AND DATA 6

quisitions were made on September 12 2019 from 3:22:25.714 to 3:23:26.714 UTC. The

filename of each acquisition encodes a timestamp, formatted as a floating-point scalar.

This value denotes the number of seconds elapsed since the J2000 epoch (January 1, 2000,

12:00:00 UTC), allowing for sub-millisecond synchronization with the spacecraft’s trajec-

tory data. [7]

The first pair is right before Jupiter enters the camera’s field of view. Naturally, they

provide little interest in analyzing Juno’s atmosphere.

Figure 2.3: Pre-encounter observation (gained x4)

The second pair is right after the planet enters the camera’s field of view. A very short

and dark limb of the night side if the planet is observed. The primary features of interest

in these frames are the atmospheric intensity drop-off and an aurora visible in the bottom

right corner.

Figure 2.4: Atmospheric encounter (gained x4)

Finally, the third pair presents the greatest scientific interest. Visually, the image

Page 6 of 140



CHAPTER 2. BACKGROUND AND DATA 7

appears to capture a terminator line separating a bright region (day side) from a dimmer

one (night side). However, this feature is not the true day/night terminator, but rather

an effect of atmospheric scattering of sunlight. The terminator line is out of bounds,

positioned below the image frame.

Figure 2.5: Atmospheric scattering

2.3 SPICE toolkit

To accurately interpret the 2D imagery acquired by the ASC, it is necessary to recon-

struct the precise 3D observation geometry at the exact moment of capture. This was

achieved using the SPICE toolkit, a library provided by NASA’s Navigation and Ancil-

lary Information Facility. SPICE stands for Spacecraft, Planet, Instrument, C-matrix and

Events. It is used to handle planetary mission geometry, time conversions, and reference

frame transformations. It relies on data files known as "kernels," which model the Juno

mission environment:

• SPK (Spacecraft Planet Kernel): Provides the trajectory of the Juno spacecraft and

the position of the Sun and Jupiter

• CK (C-matrix Kernel): Provides the attitude of the spacecraft, allowing to determine

the pointing vector of the camera

• PCK (Planetary Constants Kernel): Provides the physical properties of Jupiter

In this study, CSPICE was used for these critical tasks:

Page 7 of 140



CHAPTER 2. BACKGROUND AND DATA 8

• Surface intercept and horizon determination : By combining the spacecraft’s position

vector with the camera’s pointing vector, each pixel’s line-of-sight was projected onto

Jupiter. This maps the 2D image plane to the 3D planetary surface, allowing to

determine the "true" boundary between the planet and space on the image. This

gives a comparison metric for the horizon detection algorithm.

• Distance and scale validation: The toolkit computes the exact slant range, i.e the

distance between the spacecraft and the horizon line, which is about 60,000 km for

the dataset. This measurement, alongside camera parameters, serves as a baseline

to derive spatial resolution, required to convert pixels into physical kilometers.

As handling these tools is complex enough and not the primary focus of this study,

LLMs were used for code generation in MATLAB to retrieve geometric data. These mea-

surements were double-checked for plausibility and consistency given the mission’s con-

straints.

Page 8 of 140



Chapter 3

Image Processing

3.1 Radiometric Calibration

The first image processing step is to isolate the signal from sensor-intrinsic artifacts.

This process addresses two categories of noise: stochastic thermal noise (dark current) and

systematic readout structures (fixed pattern noise).

3.1.1 Dark frame subtraction

The primary calibration step involves the subtraction of a dark reference frame, gener-

ated by averaging multiple exposures taken with the shutter closed at the same operating

temperature and integration time as the science data. This process serves a dual purpose:

1. Thermal correction: it removes the stochastic dark current noise. This is a thermal

phenomenon where silicon atoms spontaneously release electrons, mimicking light

signals. They accumulate during exposure and appear as signal in the image, making

dark current noise extremely temperature and exposure dependent. Since it is purely

additive, the reference dark frame can be subtracted from the raw image.

2. Fixed pattern noise removal: The ASC sensor exhibits a vertical oscillatory pattern

caused by gain variations in the column readout amplifiers. Since this pattern is

systematic and stable over time, it is captured in the dark frame.

By subtracting the reference frame from the raw image, both the thermal baseline and

9



CHAPTER 3. IMAGE PROCESSING 10

the vertical stripes are effectively eliminated in a single operation:

Icorr(x, y) = Iraw(x, y)− Idark(x, y)

Figure 3.1: Before and after dark frame subtraction (images gained x10). The background
is much darker and vertical stripes are removed.

Alternatively, the oscillatory pattern and the DC component could be filtered in the

frequency domain. Since the readout noise is a vertical periodic oscillation, its spectrum

is concentrated on the horizontal axis of the 2D Fourier transform (see 3.2). Notching

the peak at frequency 0 would reduce overall brightness. Notching the secondary peaks

would remove the periodic noise. However, this approach is only of theoretical interest

and suboptimal compared to dark frame subtraction. Indeed, notching introduces ringing

artifacts near high-frequency features such as stars, degrading the signal. In addition, FFT

is computationally far heavier than simple integer substraction.

3.1.2 Residual sensor artifacts

Following the dark subtraction, residual systematic artifacts persist in the calibrated

image. The most prominent feature is a localized, additive brightness gradient visible on

the left edge of the sensor. Physically, this phenomenon (known as amplifier glow) is a

consequence of the sensor’s architecture. The power supply and readout electronics are

located along the left side of the silicon die. During the readout process, these components

dissipate power, leading to localized heating. This power dissipation creates a thermal

gradient across the silicon substrate. Since dark current generation is exponentially depen-

Page 10 of 140



CHAPTER 3. IMAGE PROCESSING 11

Figure 3.2: 2D Fourier transform of dark frame

dent on temperature, pixels in close proximity to the warm power supply rails accumulate

significantly more thermal charge than those in the cooler center of the array.

To eliminate these column-correlated artifact, a column-median subtraction filter is

employed. This method relies on the fact that the majority of field of view captures deep

space. Consequently, the statistical median of any column provides an estimate of the

background bias level for that column, independent of bright features such as stars or the

planetary disk.

Figure 3.3: Line scan of raw (in red) and calibrated (in blue) background intensities (mov-
ing average). The calibration successfully removes amplifier glow (on the left-hand side)
and background bias.

Page 11 of 140



CHAPTER 3. IMAGE PROCESSING 12

3.2 External Noise Mitigation

3.2.1 Radiation noise characterization

Jupiter’s radiative environment The Juno spacecraft operates in a harsh radiation

environment, primarily dominated by the Jovian radiation belts. As it approaches the

poles, the flux of particles in the magnetosphere increases by several orders of magnitude.

The CCD is exposed to ionizing radiation flux, specifically high-energy electrons. For a

star tracker, which relies on identifying stable constellations, this creates a false depiction

of the sky by adding thousands of transient bright spots, interpreted as stars. Therefore,

removing these bright features is not an enhancement step : it is absolutely necessary to

retrieve scientific data from the image.

Figure 3.4: Sensor-particle in-
teraction [6]

Figure 3.5: Jovian magnetosphere particle flux [6]

Particle-sensor interaction The ASC sensor is equipped with radiation shielding that

significantly reduces the flux of particles reaching the CCD. While it efficiently blocks pro-

tons and electrons <10MeV, higher energy particles have enough momentum to penetrate

the shielding enclosure. The particles that do reach the CCD liberate charge that is col-

lected for a single frame. The noise is therefore transient : it appears in one frame and is

completely uncorrelated in the next one.

In the image, an electron appears as a very high intensity isolated pixel because it

deposits a large amount of kinetic energy in a single potential well of the CCD. This

Page 12 of 140



CHAPTER 3. IMAGE PROCESSING 13

"impulse" characteristic makes noise distinguishable from other light sources. The optical

system is designed to spread out focal objects (i.e. stars) over a Point Spread Function

with an area larger than 4 pixels [6] (see 3.7).

Figure 3.6: Blue line indicates radiation hit, characterized
by a pixel-wide impulse (Dirac delta function). Red line
represents a star, displaying a broader Gaussian distribu-
tion consistent with the optical PSF.

Figure 3.7: Radiation noise
(dots) and stars from cali-
brated image

3.2.2 Gradient-based filtering

The algorithm determines which pixels are valid data and which are radiation speckles.

To preserve the edges of the planets and the star field, the chosen topology is a gradient-

based switching median filter. Unlike a standard median filter that processes every pixel

(potentially blurring fine details), this method is conditional, meaning it only modifies

pixels identified as defective based on a gradient threshold. The detection logic relies

on the morphological difference between the sharp profile of a radiation speckle and the

smoother gradient of a Point Spread Function (cf. 3.6).

Step A : Gradient detection The main challenge is to wisely choose the threshold.

If it is set too low, false detections will occur. Stars will be treated as detected particles

and removed. If set too high, radiation speckles will be interpreted as stellar candidates.

There are 2 cases to separate :

• Light sources : The optics are calibrated to have a finite Point Spread Function. The

Page 13 of 140



CHAPTER 3. IMAGE PROCESSING 14

signal from a star is normally distributed.

Istar(r) ∝ e−r
2/2σ2

• Radiation noise : a particle enters and exit the same pixel sensor (in most cases).

This results in a high-intensity impulse signal. The gradient between the speckle and

the neighbor is nearly equal to the amplitude of the hit itself/

Irad(x, y) = A · δ(x− x0, y − y0)

Therefore, by setting a gradient threshold Tgrad such that:

max(∇Istar) < Tgrad < min(∇Irad)

the filter can effectively separate the two sets.

Step B : Median Replacement Pixels flagged by the gradient check are replaced using

a kernel restricted to the nearest orthogonal neighbors (top bottom left right). This method

is preferred to a box or Gaussian filter to preserve the edge of Jupiter’s limb.

Pnew(x, y) = median{P (x, y − 1), P (x, y + 1), P (x− 1, y), P (x+ 1, y)}

This approach is supported by literature [8], where Van Dokkum demonstrated that

cosmic rays can be robustly distinguished from stars by analyzing the sharpness of their

edges (using Laplacian or gradient derivatives) rather than just their intensity.

3.3 Despinning

Due to the ASC staggered readout (cf. 2.1), a single “image” actually contains two

interleaved fields captured at different times. During the fixed delay ∆t between the odd-

and even-row readouts, Juno rotates, causing a systematic duplication and misalignment

of all scene features. Despinning compensates this intra-frame motion by mapping the

Page 14 of 140



CHAPTER 3. IMAGE PROCESSING 15

even field back to the odd-field acquisition time, after which both fields are merged into a

single geometrically consistent frame.

3.3.1 Odd/even field decomposition

Let I(u, v) denote the raw 752 × 580 image, with u the column index and v the row

index. The two half-height fields are extracted by row decimation:

Ieven(u, y) = I(u, 2y + 1) (3.1)

Iodd(u, y) = I(u, 2y) y ∈ [0, 289] (3.2)

Ieven and Iodd seem to be inverted because the index starts with 0. Line number 1 (odd)

corresponds to I(u, 0).

3.3.2 Rotation alignment and merge

For accurate alignment, the motion between both fields is modeled as a 3D rotation

of the camera’s line-of-sight vectors. The process begins by transforming the spacecraft’s

angular velocity vector ωSC , which is defined in the spacecraft body frame, into the cam-

era’s reference frame (see figure 3.8). This is achieved using the fixed mounting rotation

matrix RSC→cam:

ωcam = RSC→camωSC (3.3)

From this angular velocity vector, the unit rotation axis k and the scalar rotation angle

θ are defined as :

k =
ωcam

∥ωcam∥
, θ = ∥ω∥∆t (3.4)

Using ω = 11.967◦/s and ∆t = 125ms yields ∆θ = 1.496◦

Each pixel (u, v) is assigned a 3D vector which represents a pinhole ray using the

Page 15 of 140



CHAPTER 3. IMAGE PROCESSING 16

intrinsic camera parameters :

r =


(u− cx) px/f

(v − cy) py/f

1

 (3.5)

Figure 3.8: Rotation between SC and camera coordinate systems [9].

The rotation from a frame to another is applied using Rodrigues’ rotation formula 3.6,

allowing to spin a vector around an arbitrary axis k [10]. For a target pixel in the even

field, its corresponding 3D vector r is rotated around the axis k by angle θ to align it with

the odd-field timestamp (see figure 3.9). The rotated vector r′ is given by:

r′ = r cos θ + (k× r) sin θ + k(k · r)(1− cos θ) (3.6)

Finally, this rotated vector r′ is reprojected onto the 2D sensor plane to determine the

motion-compensated pixel coordinates (u′, v′), allowing the even field to be merged seam-

lessly with the odd field. Since the even field has half the vertical sampling, the corre-

sponding even-field row index is

y′ =
v′ − 1

2

The intensity is obtained by bilinear interpolation of Ieven(u′, y′). Pixels whose back-
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Figure 3.9: Rotation of the camera’s pointing vector around the SC’s spin axis (expressed
in camera frame).

projected coordinates fall outside the even-field bounds are assigned zero, which explains

the residual border artifacts observed after despinning.

The two fields are finally merged into a single full-resolution image by interlacing. The

odd rows are taken directly from Iodd, while the even rows are filled with the motion-

compensated samples from Ieven→odd evaluated on the even-row grid. This preserves the

original 752× 580 sampling. The total despinning result is shown in Fig. 3.10.

(a) Raw ASC image (b) Despinned image

Figure 3.10: Effect of the despinning procedure.
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3.4 Lens Distortion Correction

The preceding analysis implicitly relied on the pinhole camera model, which assumes

the lens is a single point without geometry. Lens distortion is a deviation from the ideal

projection in the pinhole model. It is a form of optical aberration where straight lines

appear bent in the CCD due to lens curvature (cf 3.11).

Figure 3.11: Lens distortion origin [11]

3.4.1 Mathematical model

The image can be corrected using a simplified Brown-Conrady transformation, consid-

ering only the first-order radial distortion term. To handle the sensor’s non-square pixel

geometry (dx = 8.6µm, dy = 8.3µm), a pixel aspect ratio α = dy/dx is introduced.

The transformation relates a point in the undistorted image space to the distorted image

space:


x = un − uc

y = α(vn − vc)

ud = uc + x(1 + κr2)

vd = vc + y(1 + κr2)/α

(3.7)

Figure 3.12: Transformation in image spaces [9]

where (un, vn) are the coordinates in the undistorted image, (ud, vd) are the coordinates
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in the distorted image, r =
√
x2 + y2 is the distance from optical center, (uc, vc) the

coordinates of the optical center, and κ a distortion coefficient.. A positive coefficient

indicates a pincushion distortion, i.e the lines bend inwards [9].

It is important to note that these equations 3.7 solve the inverse problem : they solve

for the input (distorted image) based on the output (corrected image). An inverse mapping

is therefore implemented : instead of iterating over the input image and projecting pixels

forward, the algorithm iterates over every coordinate (un, vn) in the target image, computes

the corresponding (ud, vd) and samples the correct intensity value.

3.4.2 Distortion magnitude determination

To assess the scale of the distortion in the Juno data, a simulation was run with the

optical parameters of the ASC’s camera:

• κ = 3.3 · 10−8

• (uc, vc) = (383, 257)

• (W,H)=(752,580)

• (DX,DY)=(8.6,8.3) µm

• α=DY/DX=0.965

Figure 3.13: Lens distortion simulation (zoomed on corner)

In the simulation 3.13, the distorted grid (red) is projected over the ideal grid of pixels

(gray). The distortion is radially dependent, reaching its maximum at the image corners, .

In these peripheral regions, the displacement is 3-4 pixels. While visually unnoticeable, it

is absolutely non-negligible in the context of atmospheric investigation. Neglecting those

few pixels can translate in a geolocation error of hundreds of kilometers.
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3.5 Performance Benchmark

This section evaluates the computational resources needed to execute the image pro-

cessing sequence. The feasibility of running the process on the onboard µASC is assessed

given the hardware specifications. One crucial detail is that only the star tracking needs

to be performed in flight. If a processing step is numerically too intensive to determine

attitude, it can be left out if it does not affect the result too much. The atmospheric

investigation is ground-based, therefore computational resources are not a limitation.

3.5.1 Implementation

The most computationally demanding stages of the pipeline are the geometric trans-

formations: despinning and lens correction. To assess their viability on onboard hardware,

they were implemented in C++. The logic relies on a standard optimization technique

that decouples time-invariant map generation from real-time pixel processing.

Pre-computation Since the lens distortion and rotation parameters are constant for

the ASC instrument, the coordinate transformation map is time-invariant. Therefore, the

computationally heavy fields are computed only once during initialization. Two floating-

point matrices (Look-Up Tables) are generated and stored in memory.

Remapping In flight, the correction is applied to incoming raw frames by referencing the

pre-computed LUTs. Because the calculated source coordinates rarely align with integer

pixel centers, the algorithm employs bilinear interpolation to resample the pixel intensity.

This separation allows the heavy trigonometric and polynomial calculations to be front-

loaded, leaving only memory lookups and interpolation for the real-time loop.

3.5.2 Onboard feasibility analysis

The analysis in table 3.1 demonstrates that the full image processing sequence is infea-

sible for the onboard µASC microcomputer due to two primary constraints :

• Processing Latency: The ASC operates on a 250 ms cycle (4 Hz) [4]. While the

geometric correction takes only 22 ms on a 3.6 GHz laptop, onboard processors (op-
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Processing Step Laptop Benchmark Onboard Feasibility

Memory (RAM)
Input Image (8-bit raw) 0.42 MB Feasible
Output Image (8-bit processed) 0.42 MB Feasible
Despin Maps (2× 32-bit float) 3.33 MB Inefficient
Lens Correction Maps (2× 32-bit float) 3.33 MB Inefficient
Total RAM Required ∼7.5 MB Borderline

Processing Time
Initialization & Map Computing 102.4 ms N/A (One-time)
Dark Frame Calibration 4.6 ms Feasible
Column-Median Subtraction 72.1 ms Critical
Speckle Removal 49.3 ms High Load
Geometric Correction (Despin + Lens) 22.4 ms Critical (FPU Load)
Total Latency per Frame ∼148.4 ms Infeasible

Table 3.1: Feasibility analysis: processing time and memory requirements for onboard
execution (single frame)

erating at <100 MHz with limited Floating-Point Unit capabilities) would execute

these floating-point interpolations orders of magnitude slower. The estimated on-

board execution time would exceed 1 second per frame, causing a processing timeout

that would disrupt the star tracker’s critical attitude determination function.

• RAM Efficiency: Storing the high-precision LUTs for geometric correction requires

approximately 7.5 MB of RAM. While technically possible within the hardware lim-

its, allocating so much of the available memory to static maps is highly inefficient

and competes with critical buffers required for star catalogs.

In conclusion, the image processing sequence is NOT feasible in its current form on the

µASC due to strict 250ms time budget. This was expected, as the star-tracking microcon-

troller was not optimized for image cleaning, but sparse feature extraction (analyzing star

shapes) rather than transforming the full 436,000 pixel array. The hardware specifications

(RAM, CPU clock speed) are constrained to the bare minimum required for this primary

function. The µASC should remain focused on lightweight tasks such as simple particle

enumeration (thresholding), while the high-load image analysis must be reserved for the

ground segment. Further work could analyze the feasibility of skipping certain numerically

Page 21 of 140



CHAPTER 3. IMAGE PROCESSING 22

heavy steps, such as lens correction and median subtraction, and still keeping acceptable

tolerance for attitude determination. That would leave only crucial steps such as bias

subtraction and de-rotation in the lighter processing sequence.

sta

3.6 Final Output

The image processing chain has successfully transformed raw, noisy sensor data into

calibrated scientific imagery. As summarized in figure 3.14, the process systematically

addressed the environmental and hardware-specific challenges of the JUNO mission. The

Figure 3.14: Image processing flowchart

final output exhibits an improved SNR and important upgrades :

• Dark calibration has normalized background intensity to nearly zero.

• Gradient-based filtering proved effective in mitigating the high-energy particle speck-

les due to harsh radiation environment. By selectively targeting high-frequency im-

pulse noise without applying a global smoothing kernel, atmospheric and stellar fea-

tures are preserved.

• Lens correction and despinning steps have aligned the image features, merging the

rotation-induced duplicates into one single object.

While the core features of the atmosphere are now distinct, residual artifacts remain,

specifically at the periphery of the frame. The left-hand side of the image exhibits edge-

effects from the despinning. These artifacts are attributed to the lack of overlapping data

Page 22 of 140



CHAPTER 3. IMAGE PROCESSING 23

for interpolation at the image border. Some vignetting is still present in the top right

corner.

Despite these minor localized issues, the central region of interest is calibrated and

geometrically corrected, rendering the dataset suitable for the intended scientific analysis.

Figure 3.15: Pre & Post-Processing
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Chapter 4

Horizon Detection

4.1 Problem statement & Motivation

This chapter investigates the feasibility of extracting Jupiter’s horizon purely based

on the dataset. Combined with star mapping, the spacecraft’s position may be recovered.

Accurate detection of the planetary horizon is a required for this 2 purposes :

• Optical navigation

• Atmospheric investigation

Fitting a curve to such partial data presents a mathematical challenge. Traditional

algebraic methods, such as the standard least-squares fit, are known to be statistically

inconsistent when applied to short arcs. They underestimate the curvature radius, leading

to substantial errors in estimating the planet’s center and the spacecraft’s relative position.

The motivation for this study is to implement and validate a robust fitting algorithm

capable of overcoming these limitations.

4.2 Gradient-based Edge Tracking

The goal of this section is to extract Jupiter’s horizon purely from the dataset, inde-

pendently of trajectory kernels. In an ideal case, the horizon is defined as the set of points

where the intensity gradient is maximized. Standard edge detection methods, such as the

Canny Detector, prove unsuitable for the ASC images. Due to the faintness of the limb
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(thus low SNR), these methods misidentify high contrast features such as stars, auroras

and atmospheric haze as part of the horizon.

To overcome this limitation, a custom algorithm was made just for this purpose. Unlike

global edge detectors, this algorithm enforces spatial continuity, tracking the horizon across

adjacent columns to reject isolated noise. While generally robust, the method remains

sensitive to high-intensity transient features, such as auroras, which can intersect the limb

and bias the method. The detection logic is implemented as follows:

• Scanning: Iterate through columns j.

• Gradient Computation: Calculate the vertical gradient vector ∇Ij for the column.

• Thresholding: Calculate an adaptive threshold Tj = µj + k · σj , where µj and σj are

the mean and standard deviation of the gradients in column j.

• Peak Finding: If a gradient ∇Ii,j > Tj is found, verify it is the local maximum within

a window [i− 3, i+3]. This step ensures the data is continuous. Update the horizon

row Rj = i.

• Zero-Order Hold: If no gradient in the window exceeds Tj , the algorithm maintains

the previous horizon row: Rj = Rj−1, assuming the limb has not moved.

This method does not work as is on the last pair of images 2.5. The detected "horizon"

is of course the separation between the bright and dark regions, even though in reality it’s

an effect of sunlight scattering. These regions need to be explicitly masked out for the

algorithm to work.

4.3 Circle Fitting Method

The edge tracking yielded a set of vaguely connected points. The goal is now to fit a

smooth curve that approximates best this discontinuous line.

4.3.1 Validity of local circle approximation

Jupiter is an oblate spheroid, with a semi-major axis (equatorial radius) and semi-

minor axis (polar radius) measuring respectively 71492km and 66854km. These values
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correspond to the point of 1 bar of pressure. This gives a flattening ratio of :

f =
a− b

a
= 6.49%

This makes Jupiter the second most flattened planet in the Solar System after Saturn,

approximating it as a sphere would yield a non-negligible error.

However, the spacecraft is looking only at an arc of ∼ 16◦ of Jupiter (data derived from

SPICE). A simulation was performed to evaluate whether a local spherical approximation

is valid (see 4.1). The outcome shows that the curvature of the limb within the narrow

FOV is indistinguishable from a spherical arc. The simulation indicated that fitting a circle

to the true ellipsoid segment yielded a radial deviation of 12.68 km, which is less than the

spatial resolution of a single pixel. An important distinction is that the radius of the fitted

circle is not the radius of Jupiter, but rather a local radius of curvature.

In conclusion, fitting a circle rather than an ellipse is valid given the narrow view angle.

Figure 4.1: Simulation of Jupiter’s ellipsoid and locally fit circle

4.3.2 Algorithm selection and validation

Fitting a circle to a set of 2D points is a common problem in image analysis. The

most classic approach is performing Kåsa’s fit. It is a simple least-square problem where
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the squared distance between the estimated circle and the set of points is minimized. It

performs well if the set of points is at least half a circle. It tends to be heavily biased

towards smaller circles when the set is a short arc, which is precisely the case for Juno’s

dataset.

For this study’s purpose, the most accurate method is a Hyperaccurate (Hyper) al-

gebraic circle fit proposed by Al-Sharadqah and Chernov [12]. This method minimizes

the algebraic error for the general circle equation defined by the parameter vector A =

(A,B,C,D)T :

A(x2 + y2) +Bx+ Cy +D = 0

The method seeks to minimize the mean square algebraic distances subject to a constraint

that prevents the trivial solution A = 0. This is formulated as a generalized eigenvalue

problem:

MA = ηNA

where M is the matrix of data moments, η is the eigenvalue, and N is the constraint

matrix, which for centered data is defined as:

N =



8z̄ 0 0 2

0 1 0 0

0 0 1 0

2 0 0 0


where z̄ is the mean of z = x2 + y2. By selecting the eigenvector corresponding to the

smallest positive eigenvalue, this constraint neutralizes the geometric bias to the order of

O(n−2), ensuring a stable estimation of the radius even when the visible horizon represents

a short limb. Algorithm implemented in C++ with use of AI tools.

Unsurprisingly, the Hyper method outperforms the basic least-square algorithm (see 4.4

for more details). Due to the short visible limb and therefore large circles, the uncertainty

on the radius is significant. The radii yielded by Kåsa’s and Hyper methods are respectively

1141 and 2248 pixels, which is about 100% difference. This was expected, as the first one

is biased towards shorter circles. Still, the efficiency of any circle fitting method is limited
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Figure 4.2: Red discontinuous data points show the output of edge-tracking. Blue line is
Kåsa’s fit. Yellow line is Hyper fit. Image gained x6.

by the quality of the edge tracking algorithm, and ultimately the data itself.

4.4 Comparison with SPICE output

Only by specifying the exact time of the image capture, the SPICE-based program

computes the exact location and field of view of the camera. It can then represent where

the 1-bar planet edge is on the image without even analyzing it. This gives a baseline for

comparing horizon detection algorithms.

The evaluation metrics for both methods is the error area (total number of mismatched

pixels) and the deviation from the radius estimate.

Algorithm Error Area (px) Radius (px) (% error)

SPICE (kernel data) 0 2458.16 (+0%)

Kåsa 7937 1141.39 (-54%)

Hyper 7261 2248.52 (-8%)

The Hyper fit outperforms the least-square in both metrics. The Kåsa fit exhibits a

massive bias towards smaller circles, underestimating the radius by 54%. Conversely, the

Hyper fit maintains the curve shape, recovering the radius with an 8% deviation despite

processing only a 16◦ arc.

However, a persistent error area of approximately 7,000 pixels remains for both meth-

ods. This discrepancy is not algorithmic but physical. The edge-tracking detects the limb

based on the strongest gradient. This corresponds to high-altitude stratosphere, scattered

sunlight, auroral emissions, rather than the 1-bar pressure level defined by the SPICE
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Figure 4.3: Red area represents the 1-bar planet edge extracted from SPICE. Blue line is
Kåsa’s fit. Yellow line is Hyper fit. Image gained x6.

model. As a consequence, the visible limb detected by the camera is offset from the phys-

ical limb provided by the kernels.

4.5 Conclusions

The investigation of horizon detection on Juno images reveals the discrepancies between

physical reality and optical observations. A horizon in a planetary image is not a binary

boundary but a continuous gradient of atmospheric scattering, especially when observed

from close. While SPICE kernels provide an exact mathematical model of the 1-bar edge,

the camera observes the cloud tops and stratospheric hazes. Consequently, any image-

based edge detection will inherently deviate from the kernel data. This atmospheric offset

is a physical reality of the dataset, not a failure of the fitting algorithm.

For scientific analysis where the spacecraft’s trajectory is well-defined, SPICE kernels

should be the primary source for geometry. Image-based horizon detection should be re-

served for scenarios where the spacecraft position is the unknown variable (e.g., autonomous

navigation). In such cases, the algorithm must combine the Hyper fit with an atmospheric

model to account for the offset between the visible atmosphere and the 1-bar edge.
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Star Mapping

The JUNO images contain a limited number of background stars that appear as com-

pact intensity ’blobs’, distributed over a small number of pixels. By computing the center-

of-mass for each blob, every star can be reduced to a single point vector in space.

Using these vectors, the relative spatial configuration of these stars can be determined.

This set can then be compared to the relative angular separations of stars listed in an

existing celestial catalogue. Once the correct mapping between the image - catalogue is

found, the orientation of the star set with respect to the image plane can be computed.

From this information, the sensor attitude can be determined accurately. Since the

sensor is fixed on the spacecraft, this directly yields the spacecraft orientation in inertial

space.

5.1 Star Detection

In the ASC images, stars appear with strongly varying intensities. On the one hand, a

small number of stars are recorded as highly concentrated, near-saturated intensity blobs.

These starts are clearly distinguishable from the background, and can be detected reliably

by applying a high absolute intensity threshold. On the other hand, the majority of stars

are significantly fainter and closer to the noise floor, which makes them way harder to

detect. To attempt to detect both groups of stars, a hybrid approach is implemented in

star_tracker.py:
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5.1.1 Dual mask construction

Let I(x, y) be the grayscale image (after denoising, see Chapter 3). A binary detection

mask is formed as

Mfinal = Msat ∨ Mfaint, (5.1)

where Msat flags saturated/near-saturated pixels and Mfaint targets small-amplitude point

sources.

(1) Saturated blobs. Saturated or near-saturated stars are detected directly from the

raw intensity image using a fixed saturation threshold, ensuring robust localisation of the

brightest point sources. A saturation threshold Tsat is applied directly on I:

Msat(x, y) = 1{I(x, y) ≥ Tsat}. (5.2)

This preserves large bright stars even when adaptive statistics (mean/std) are dominated

by Jupiter glow or background gradients.

(2) Faint stars via background subtraction. In parallel, faint stars are detected

through background subtraction followed by adaptive thresholding, which enhances small-

amplitude point sources while remaining locally robust to background variations. A smooth

background estimate B(x, y) is computed with a large median filter kernel (e.g. 61× 61 in

our default preset):

B = MedianFilter(I, kbg), I ′(x, y) = max(I(x, y)−B(x, y), 0). (5.3)

Optionally, I ′ is normalized to [0, 1] by its maximum. An adaptive threshold is then

computed using the global mean and standard deviation:

T = µ(I ′) + ασ(I ′), (5.4)

where α is the threshold_multiplier (e.g. α ≈ 1.4 in the default settings). The faint-star

mask is

Mfaint(x, y) = 1{I ′(x, y) ≥ T}. (5.5)
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Optionally, a morphological opening removes isolated pixels and small artifacts.

Figure 5.1: (Left) Input frame used for star detection. (Right) Saturated mask

5.1.2 Centroid extraction

Connected components are extracted from Mfinal. For each connected component Ω,

we compute:

• its area A = |Ω| (used to reject oversized artifacts), and

• an intensity-weighted centroid (x̂, ŷ) using the original (non-binary) image intensities.

Let w(x, y) = I(x, y) for (x, y) ∈ Ω. The weighted centroid is:

x̂ =

∑
(x,y)∈Ω xw(x, y)∑
(x,y)∈Ωw(x, y)

, ŷ =

∑
(x,y)∈Ω y w(x, y)∑
(x,y)∈Ωw(x, y)

. (5.6)

The sum
∑

w(x, y) is used as a flux proxy to rank detections; the pipeline keeps only the

top-N brightest detections (e.g. N = 400), because the subsequent matching is designed

around bright catalogue stars.
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Figure 5.2: (Left) Mask-subtracted image Msat. (Right) Detected star candidates

Figure 5.3: Detected star candidates overlaid on the image. Each blob is reduced to a
subpixel centroid via Eq. (5.6).

5.2 Star Catalogue

5.2.1 Catalogue selection

A practical limitation is that not every catalogue is ideal across the full magnitude

range of interest:

• Bright stars: a HIP/Bright-Star-Catalogue [13] style list is reliable for very bright

objects (roughly mag ∈ [−2, 4]).

• Fainter stars: The Gaia DR3 catalogue [14] provides dense coverage and accurate

astrometry, but a given curated export may miss some of the extremely bright stars

or require special handling of identifiers.

Therefore we use a mixed approach: HIP-based entries for the brightest stars, and Gaia

entries beyond that range, with a crossmatch/name-lookup layer for consistent labeling

(HIP numbers, Gaia IDs, and friendly names/IAU where available).

5.2.2 Negligibility of Parallax effects

Catalogue coordinates are provided as inertial directions from the Solar System barycen-

tric perspective (J2000/ICRF). For star-tracking, we treat stars as fixed points on the

celestial sphere. The error from observing from Jupiter instead of Earth is dominated by
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stellar parallax:

θparallax ≈
B

D
, (5.7)

where B is the observer baseline (Earth–Jupiter distance, order of a few AU) and D is the

star distance (typically many parsecs, i.e., light-years). Even for very nearby stars, the

resulting angular difference is on the order of arcseconds, which is negligible compared to

the matching tolerance used in our robust solver (order of 10−1 degrees). Hence, using the

same inertial star directions is sufficiently accurate for this study.

5.2.3 Inertial vector conversion

Each catalogue star is represented by its equatorial coordinates (α, δ) in radians (RA,

Dec). The corresponding inertial unit vector k is:

k(α, δ) =


cos δ cosα

cos δ sinα

sin δ

 , ∥k∥ = 1. (5.8)

In the code, these are stored as vec_inertial per catalogue entry and are the fundamental

primitives used for angular comparisons and attitude estimation.

5.3 Attitude Estimation

5.3.1 Pattern ambiguity

If we only consider relative geometry between stars, the key invariant is the angle

between two lines of sight:

θij = arccos
(
u⊤i uj

)
, (5.9)

where ui and uj are unit direction vectors.

With three stars, there are three pairwise angles; with four stars, there are six. In

a large catalogue (thousands to tens of thousands of stars), a triple of angles may still

occur for multiple different triples, especially under measurement noise. Adding a fourth

star provides additional constraints (six angles total), and the probability of accidental
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collisions becomes extremely small.

However, even if the identity of the stars is known, the attitude is still not obtained from

angles alone: the same 4-star shape can appear at different locations on the sensor, which

corresponds to different boresight directions. In other words, inter-star angles constrain

the pattern but not the absolute pointing. The absolute pixel locations must be mapped to

absolute rays in the camera frame, and these rays must be aligned with inertial catalogue

vectors.

In our implementation, this disambiguation is achieved by (i) generating hypothe-

ses from angle-consistent pairs, and (ii) validating them against many additional stars

(RANSAC inliers). This plays the same role as “adding the 4th star and beyond”: it

collapses the remaining ambiguity to a unique attitude.

5.3.2 Camera ray projection

For each detected centroid (x̂, ŷ) (in image pixel coordinates), we compute a unit ray

vcam using a pinhole camera model with the ASC intrinsics. Let (fx, fy) be focal lengths

in pixels and (cx, cy) the principal point. Then:

xn =
x̂− cx
fx

, yn = − ŷ − cy
fy

, (5.10)

where the minus sign accounts for the image y-axis pointing downward while the camera

frame convention uses +y upward.

A small radial distortion term is optionally applied using a coefficient κ:

r2 = x2n + y2n,

xd
yd

 = (1− κr2)

xn
yn

 . (5.11)

Finally, the (unnormalized) ray is ṽ = [xd, yd, 1]
⊤ and the unit ray is

vcam =
ṽ

∥ṽ∥
. (5.12)

Note on resizing. Since figures in this report may be exported/rescaled, the code rescales
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(fx, fy, cx, cy) by the ratio of the current image dimensions to the hardware sensor resolu-

tion before applying Eq. (5.10).

5.3.3 Fast candidate search

To efficiently propose catalogue correspondences, angles between pairs of the N bright-

est catalogue stars are precomputed:

θcat
ab = arccos

(
k⊤a kb

)
. (5.13)

In classical star trackers, Mortari’s Pyramid star pattern recognition algorithm [15]

introduces the so-called K-vector technique to accelerate this search. All catalogue pair-

angles are stored in a single sorted array. A small auxiliary index (the K-vector) then maps

a range query

θobs ± ε

to (approximately) the corresponding lower and upper indices in that sorted list. This

converts an exhaustive scan over all pairs into a fast range lookup over a short contiguous

interval.

A discretized equivalent is used here: the catalogue angles are grouped into bins of

width ∆θ (e.g. 0.01◦), yielding a dictionary

bin → {(a, b, θcat
ab )}.

Given an observed detection pair-angle, only the corresponding bin (and a small neigh-

borhood of adjacent bins to account for measurement noise) is queried. This reduces the

candidate set by several orders of magnitude, while preserving the same core objective as a

K-vector range search: limiting hypothesis generation to catalogue pairs with compatible

inter-star angles.
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5.3.4 Robust solver (RANSAC/Wahba)

Let {vi}Mi=1 be the detected camera rays (Eq. (5.12)) and {kj}Kj=1 the catalogue inertial

vectors (Eq. (5.8)). We seek the rotation matrix R ∈ SO(3) such that

kπ(i) ≈ Rvi, (5.14)

where π(i) is the catalogue index matched to detection i.

Figure 5.4: From Image Plane Coordinates to Inertial Frame Vectors

(1) RANSAC hypothesis generation from one angle-consistent pair. We precom-

pute all detection-pair angles θdet
ij via Eq. (5.9). Each RANSAC iteration:

1. randomly selects a detection pair (i, j) with measured θdet
ij ,

2. retrieves candidate catalogue pairs (a, b) whose θcat
ab lies within the corresponding bin

neighborhood,

3. builds a candidate attitude R using the TRIAD method from the two vector corre-

spondences.

TRIAD [16] construction. Given two non-collinear camera rays (v1,v2) and their

inertial matches (k1,k2), TRIAD forms orthonormal bases:

t1 = v1, t2 =
v1 × v2

∥v1 × v2∥
, t3 = t1 × t2, (5.15)
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and similarly (s1, s2, s3) from (k1,k2). Writing

Ccam = [t1 t2 t3], Cin = [s1 s2 s3],

the attitude mapping camera → inertial is

R = Cin C
⊤
cam. (5.16)

(2) Inlier finding. For a candidate R, every detected ray is projected into the inertial

frame:

k̂i = Rvi. (5.17)

We assign it to the catalogue star with maximum dot product:

j∗(i) = argmax
j

k⊤j k̂i, (5.18)

and declare an inlier if the angular error is below a tolerance ε:

arccos
(
k⊤j∗(i)k̂i

)
≤ ε. (5.19)

The hypothesis with the highest inlier count is kept.

(3) Wahba [17] refinement using Davenport’s Q-method [18]. Once a consensus

set of inliers is found, the attitude is refined by solving Wahba’s problem:

R∗ = arg min
R∈SO(3)

∑
i∈I

wi

∥∥kπ(i) −Rvi

∥∥2 , (5.20)

where I is the inlier set and wi are weights (unity in our default configuration). The

implementation uses Davenport’s Q-method to obtain the optimal rotation via a quaternion

eigenproblem, then converts the quaternion to R∗.
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5.3.5 Boresight calculation

The final output of the attitude solver is R mapping camera-frame rays to inertial

directions. The camera boresight is the camera z-axis:

bcam =


0

0

1

 , bin = Rbcam =


x

y

z

 . (5.21)

The corresponding pointing angles are:

δ = arcsin(z), α = atan2(y, x), (5.22)

with α wrapped to [0, 2π) and both angles reported in degrees. This yields the final

RA/Dec of the optical axis for the considered frame.

5.3.6 Mapping results

After the refined attitude is obtained, every detection is matched again using the

nearest-by-dot criterion (Eq. (5.18)) within a slightly looser angular threshold (e.g. 0.3◦).

The image (Fig. 5.5) is then annotated with detected centroids, matches star names/iden-

tifiers (HIP / Gaia / friendly name when available) and the estimated boresight RA/Dec.

Figure 5.5: Final star mapping result. Matched stars are labeled in the image plane, and
the estimated camera pointing (α, δ) is printed.
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Chapter 6

Applications

6.1 Juno’s position vector

As defined in the research objectives (Chapter 1), the final goal of this study was to

combine the limb geometry and the star-derived attitude to recover an image-constrained

spacecraft position estimate. Ideally, this would close the loop on the geometric recon-

struction.

However, the investigation in Chapter 4 demonstrated that the optical horizon detected

in the ASC images does not correspond to the physical 1-bar reference surface provided

by the SPICE kernels. Instead, it represents a diffuse boundary of stratospheric haze and

scattered sunlight, introducing a systematic offset that cannot be fully corrected without

a complex atmospheric radiative transfer model.

Consequently, applying the navigation algorithm to this specific dataset yields a biased

position fix. Therefore, the following subsection focuses on the theoretical derivation

of the horizon navigation method. This explains the mathematical logic intended to be

applied, demonstrating how the position vector is constructed in a scenario where the

visual limb is detected reliably.
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6.1.1 Constructing the position vector

Limb pixels to camera-frame rays

Let (xi, yi) be pixel coordinates sampled from the detected horizon curve, where i =

1, . . . , N indexes valid limb points. Because the images are already lens-corrected and

despun (Chapter 3), a pinhole model is sufficient for ray construction.

Using the camera intrinsics (fx, fy, cx, cy) in pixels, each pixel is mapped to a normalized

direction in the camera frame:

xn,i =
xi − cx

fx
, yn,i = −

yi − cy
fy

, (6.1)

where the minus sign accounts for the downward image y-axis convention. The correspond-

ing (unnormalized) ray is

ṽi =


xn,i

yn,i

1

 , vi =
ṽi

∥ṽi∥
. (6.2)

Camera intrinsics. For the JUNO ASC camera, the focal length and principal point are

known from calibration and are used directly. The focal lengths in pixel units are given by

fx =
f

DX
, fy =

f

DY
, (6.3)

with f = 20006 µm and (DX , DY ) = (8.6, 8.3) µm. The principal point is fixed at

(cx, cy) = (383, 257) pixels.

Camera rays to inertial rays

Let RI←C be the rotation matrix from camera frame to inertial frame estimated by

the star mapping solver (Chapter 5). Each limb ray becomes an inertial unit vector:

ui = RI←C vi, ∥ui∥ = 1. (6.4)
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Spherical horizon constraint (tangent-ray cone)

Assume Jupiter is locally approximated as a sphere of radius R (as motivated in Chap-

ter 4). Let r be the unknown spacecraft position vector in a Jupiter-centered inertial frame

(origin at Jupiter’s center, axes aligned with J2000/ICRF). A limb ray from the spacecraft

has the parametric form:

pi(s) = r+ sui, s ≥ 0. (6.5)

Tangency to the sphere ∥p∥ = R occurs when the quadratic in s has zero discriminant.

Expanding ∥r+ sui∥2 = R2 yields:

s2 + 2s (r⊤ui) + (∥r∥2 −R2) = 0. (6.6)

The tangency condition is:

(r⊤ui)
2 = ∥r∥2 −R2, i = 1, . . . , N. (6.7)

This implies all limb rays lie on a cone with axis r, i.e. the dot product with the axis

direction is (ideally) constant over all i (see Fig. 6.1).

Figure 6.1: Spherical horizon tangent geometry
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Cone-axis fit and range recovery

Define the unit position direction:

n =
r

∥r∥
, ∥n∥ = 1. (6.8)

Using Eq. (6.7) and r = ρn with ρ = ∥r∥, one obtains:

(ρn⊤ui)
2 = ρ2 −R2 ⇒ (n⊤ui)

2 = 1−
(
R

ρ

)2

. (6.9)

Hence n⊤ui should be (up to sign) constant across limb rays. Because the observed limb

is only a short arc, we estimate n and the constant c by least squares:

min
∥n∥=1, c

N∑
i=1

(n⊤ui − c)2. (6.10)

Remark. Because the detected horizon typically covers only a short arc, the cone-axis

estimation in Eq. (6.10) can become weakly constrained. In direction space, the limb

rays {ui} occupy only a small segment of the cone–sphere intersection, which limits the

information available to determine the cone axis. As a result, the smallest-eigenvalue

eigenvector of the covariance-like matrix C may become ill-conditioned [19] and sensitive

to outliers in the limb points and small biases in the attitude solution.

For a given n, the optimal c is c = 1
N

∑
i n
⊤ui. Substituting this back shows Eq. (6.10)

minimizes the variance of the projections n⊤ui. Writing µ = 1
N

∑
i ui and the covariance-

like matrix

C =
N∑
i=1

(ui − µ)(ui − µ)⊤, (6.11)

the minimizing n is the eigenvector of C associated with its smallest eigenvalue. This is

equivalent to performing Principal Component Analysis (PCA) on the set of ray vectors

and selecting the component of minimum variance [20, Ch. 3]. We then set

c =
1

N

N∑
i=1

n⊤ui. (6.12)

For a valid configuration, ui points approximately toward Jupiter, while n points from
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Jupiter’s center to the spacecraft; therefore c is expected to be negative. If the eigenvector

sign yields c > 0, we flip n← −n.

Finally, combining c = n⊤ui ≈ − cosβ with the geometric relation sinβ = R/ρ gives:

ρ =
R√
1− c2

, r = ρn. (6.13)

Equation (6.13) yields the full Jupiter-centered position vector in inertial coordinates and

follows directly from the cone geometry introduced in Fig. 6.1.

Optional ellipsoid refinement

If the spherical approximation is insufficient, Jupiter can be represented as an oblate

spheroid (semi-major axis a, semi-minor axis b). In a Jupiter-centered frame aligned with

the ellipsoid axes, the surface is described by

x⊤Qx = 1, Q = diag

(
1

a2
,
1

a2
,
1

b2

)
. (6.14)

Tangency of the line x(s) = r+ su to the quadric is again obtained by a zero-discriminant

condition, yielding

(u⊤Qr)2 = (u⊤Qu) (r⊤Qr− 1). (6.15)

A least-squares solve over Eq. (6.15) can be used to refine r, using the spherical solution

from Eq. (6.13) as initialization. In this work, the ellipsoidal model is employed only as a

refinement step and not as a primary estimator.

6.1.2 Consistency checks

Tangency residuals

After estimating r, the spherical tangency constraint is evaluated per limb ray using

ei = (r⊤ui)
2 − (∥r∥2 −R2). (6.16)
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In the ideal noiseless model, ei = 0. In practice, the distribution of {ei} provides an

immediate diagnostic of:

• horizon detection quality (outliers from aurora, haze, or intensity gradient artifacts),

• residual camera modeling errors (e.g. imperfect distortion correction or intrinsics),

• attitude error from star mapping (rotation bias in RI←C),

• physical limb offsets relative to the chosen reference radius R.

The spherical form of Eq. (6.16) is intentionally retained, as it yields a uniform and radius-

independent consistency metric.

Cone projection dispersion

Because the cone model predicts n⊤ui ≈ c, the standard deviation

σc =

√√√√ 1

N

N∑
i=1

(n⊤ui − c)
2 (6.17)

should remain small for a consistent solution. This metric is independent of the assumed

planetary radius and isolates purely angular consistency.

Inter-frame stability

The dataset contains image pairs separated by 500 ms. Applying the full pipeline to

both frames of a pair should yield nearly identical position vectors r, with deviations

consistent with the spacecraft displacement over 0.5 s. Large discrepancies indicate that

the detected horizon points are not sampling the same physical limb (e.g., contamination

by the bright scattering boundary in Fig. 2.5), rather than variations in camera intrinsics,

which are fixed by calibration.

6.1.3 Transforming to Jupiter-centric coordinates

The position vector r from Eq. (6.13) is expressed in a Jupiter-centered inertial frame

aligned with J2000. For interpretation on the planet (latitude and longitude), or for com-
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parison with body-fixed products, it is often desirable to express this vector in a Jupiter

body-fixed frame.

Let RJ←I(t) denote the rotation from inertial J2000 to the Jupiter-fixed frame at epoch

t. The transformation is given by

rJ(t) = RJ←I(t) rI . (6.18)

This transformation is applied solely for interpretation and comparison; all estimation

steps are performed in the inertial frame.

From rJ = [x y z]⊤, the planetocentric longitude and latitude are obtained as

λ = atan2(y, x), φ = arctan 2
(
z,
√

x2 + y2
)
, (6.19)

with λ wrapped to [0, 2π).

6.2 Atmospheric Investigation

6.2.1 Spatial resolution

The first step before any atmospheric analysis is to convert pixels into physical kilo-

meters. This scaling factor, or spatial resolution S, is determined by the specific viewing

geometry and intrinsic camera parameters. Using the principle of similar triangles (see

sketch 6.2),
D

f
=

S

p
(6.20)

Where:

• D is the slant range to the limb provided by SPICE kernels (60, 621 km for this

observation).

• p is the width of a pixel (8.6 µm).

• f is the focal length (20, 006 µm).
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Figure 6.2: Schematic illustrating the projection of sensor pixel onto the target plane.

Substituting the value gives :

S =
D · p
f

=
60621km · 8.6µm

20006µm
= 26.06km/px

It is important to note that this value is valid strictly at the limb tangent point. For any

features projected below the horizon (on the planetary disk), the distance D decreases

slightly, resulting in a finer spatial resolution (smaller km/px value).

6.2.2 Validation of thermosphere detection

The atmospheric region extending above the limb is identified as the thermosphere, the

upper boundary layer that separates Jupiter’s envelope from the vacuum. This layer begins

approximately 350 km above the 1-bar level [21]. Unlike the underlying troposphere, which

is governed by solar heating and convection, the thermosphere is defined by a dramatic

rise in temperature and intense interaction with the Jovian magnetosphere.

The defining characteristic of this layer is its immense extent, driven by temperatures

that rise dramatically with altitude, ranging from 160 K to 900 K. This extreme thermal

expansion is fueled by high-energy inputs: the layer absorbs solar ultraviolet radiation and

is bombarded by precipitating charged particles from the magnetosphere. This particle
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precipitation is the primary driver of Jupiter’s powerful auroral emissions. The detection

of these auroral signatures in the data confirms that the observed limb profile corresponds

to this active upper-atmospheric layer.

Scale Height Correlation

A critical parameter for characterizing this atmospheric layer is the scale height (H),

which represents the vertical distance over which the atmospheric density decreases by a

factor of e. In a hydrostatic atmosphere, it is defined as

H =
kT

mg
(6.21)

where k is the Boltzmann constant, T is the kinetic temperature, m is the mean molecular

mass, and g is the local gravitational acceleration. Due to very high temperatures, the

atmosphere expands significantly, resulting in scale heights that are orders of magnitude

larger than those found in the cloud decks below (H ≈ 27 km at 1-bar level).

To analyze the intensity profile, radial line scans were performed on the cleaned data

(cf. 6.3). As discussed in Chapter 4, the horizon is derived from SPICE kernels, eliminating

approximation errors. These line scans are averaged and fit to an exponential curve (cf.

6.4) of the following form :

I(r) = I0e
−r/H (6.22)

The fitting provides an estimated scale height H of 4.8 pixels, translating to ∼ 125 km

using the spatial resolution derived earlier.

Figure 6.3: Radial line scans of Jovian atmosphere. Red lines are omitted because aurora
interferes with the signal. Image gained x6.

Page 48 of 140



CHAPTER 6. APPLICATIONS 49

This value correlates strongly with theoretical predictions, driven primarily by the

thermal structure of the layer. As defined in equation 6.21, the scale height is directly

proportional to the temperature (H ∝ T ). While the troposphere is cold (130 K), Yelle &

Miller [21] describe the thermosphere as a region of extreme heating, where temperatures

rise to between 800 K and 1000 K. Consequently, the scale height is effectively multiplied

by a factor of roughly 5 to 7 relative to the lower atmosphere, where the scale height is 27

km. The derived value of 125 km is consistent with these high temperatures, confirming

that the exponential decay detected in the imagery corresponds to the hot, expanded

thermosphere.

Figure 6.4: Averaged radial line scan starting from 1 bar horizon
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Chapter 7

Discussion and Conclusions

7.1 Discussion

This study investigated whether the Juno ASC, originally designed as a navigation star

tracker, can be repurposed into a scientifically useful imager for atmospheric inspection and

as a supporting sensor for optical navigation. The results show that meaningful information

can be extracted, but only when a dedicated processing chain (briefly summarized by

Figure 7.1) designed for sensor bias, radiation contamination, and rotation-induced smear

is applied.

7.1.1 What works best for this Juno dataset

Radiometric calibration and structured-bias suppression Dark-frame subtraction

combined with optional column-bias removal removes sensor-induced background bias. In

this dataset, the large fraction of deep-space pixels makes a column-median estimator

effective for suppressing column-correlated residuals.

Radiation mitigation Radiation hits appear as compact, high-gradient impulses that

must be removed without attenuating the star point-spread function or the faint limb

gradient. Global smoothing reduces speckles but degrades both centroiding and edge lo-

calization. The gradient-based switching median filter provides the most suitable trade-off

by selectively suppressing impulse artifacts while preserving broader structures. The effect
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of this step is illustrated by the reduction of radiation speckles between the intermediate

frames in Fig. 7.1.

Robust star mapping for inertial attitude recovery Despite the limited number

of detectable background stars and strong intensity variation across the frame, the star

mapping pipeline succesfully recovers the camera-to-inertial rotation. A hybrid detection

strategy increases the usable star set, while the robust matching stage resolves catalogue

ambiguities by validating hypotheses against many additional detections (RANSAC in-

liers). After a consistent correspondence set is found, Wahba refinement directly provides

the spacecraft orientation in inertial space.

Reconstruction through despinning and lens correction The 125 ms delay be-

tween odd and even readout fields corresponds to a measurable angular rotation, making

raw frames inconsistent with a single pinhole camera model. Rotation-compensated de-

spinning restores a coherent capture. While lens distortion is visually subtle, it becomes

relevant when pixel-level errors are converted to physical distance at the limb.

Horizon estimation on short arcs Because the limb occupies only a short arc in a 16◦

field of view, standard algebraic least-squares circle fitting (Kåsa) becomes strongly biased.

The Hyperaccurate fit is more stable for this regime and yields a radius estimate that is

consistent with SPICE to within the reported residual level. This improves geometric

extraction from the image, but does not remove the systematic mismatch that originates

from the horizon definition.

7.1.2 Limitations and sources of error

Figure 7.1 provides an overview of the full processing pipeline: from the raw image (1)

through despinning (2) and denoising (3) to an image suitable for feature extraction. The

final outputs illustrate two parallel branches, star detection and catalogue-based attitude

annotation (4) and horizon extraction via limb detection and geometric overlay (5).
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Horizon detection compared to SPICE reference The dominant discrepancy in

the horizon comparison is physical rather than numerical. The ASC detects a radiometric

transition shaped by scattering and haze at altitudes above the 1-bar level used by SPICE.

Consequently, horizon-based optical navigation inherits a systematic range bias unless an

atmospheric offset model (or equivalent correction) is introduced.

Dataset scope Conclusions are based on a limited observation set, restricting validation

across illumination conditions radiation variability.

Star detection and matching limitations Star mapping performance is constrained

by the photon-limited regime and the presence of strong stray light gradients near the

Jovian limb. Faint stars near the noise floor can be missed or fragmented into spurious

detections, while radiation residuals can introduce false candidates. Although the robust

solver mitigates these effects through inlier screening, frames with very low star counts or

heavy contamination reduce attitude confidence and can increase sensitivity to centroiding

and catalog matching errors.

Onboard infeasibility Full-frame calibration, filtering, and dense remapping exceed the

µASC processing constraints at 4 Hz, confining the complete reconstruction to ground-

based processing.
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Figure 7.1: From raw image to star detection and horizon extraction.
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7.2 Conclusions

7.2.1 Main findings

• A tailored image processing sequence can convert raw ASC frames into scientifically

interpretable imagery.

• The gradient-based switching median filter preserves both images features more ef-

fectively than global smoothing in this dataset.

• Hyperaccurate circle fitting provides a good estimate of the horizon line, but opti-

cal navigation accuracy is inherently limited by the data itself without additional

modeling.

• Robust star mapping (hybrid detection + RANSAC/Wahba refinement) yields a

stable camera-to-inertial attitude estimate from sparse star fields.

7.2.2 Recommendations for future work

1. Parameterize the atmospheric offset. Introduce Reff = R+∆h or an intensity-based

limb model so that the radiometric-to-geometric discrepancy becomes an estimable

correction rather than a persistent bias.

2. Estimate the feasibility of removing heavy processing steps and still get a god accu-

racy on attitude determination for onboard attitude and, potentially, position deter-

mination.

Overall, the ASC images can be repurposed into a useful scientific and geometric

dataset, but the limiting factors are dominated by the little amount of available data,

sensor architecture, compute constraints (for the onboard attitude determination), and

challenges in interpreting the observed limb.
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Appendix A

Additional Material

A.1 Star recognition output from whole dataset
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(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6

Figure A.1: Star-tracking results for six representative ASC frames.
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A.2 Source Code

Note: The source code presented in this appendix was assembled, refactored, and

cleaned with the assistance of AI-based tools to improve code structure, readability, and

consistency across different scripts, while preserving the original algorithms and logic de-

signed by the authors.

A.2.1 Main script

1 #!/usr/bin/env python3

2 """

3 TotalCode: unified JUNO pipeline with all toggles + star tracker in

one file.

4

5 Includes:

6 - Despin (per -pixel rotation)

7 - Lens distortion correction

8 - Denoising (dark frame , flatten , spike , median/Gaussian)

9 - Column -median glow removal

10 - Fourier notch filtering

11 - Edge tracking , circle fits , limb profiles

12 - Star tracker (catalog loading , detection , attitude , annotation)

13

14 Use the feature toggles below to enable/disable each stage.

15 """

16

17 from __future__ import annotations

18

19 from dataclasses import dataclass , field

20 from pathlib import Path

21 from typing import Dict , Iterable , List , Optional , Sequence , Tuple

22

23 import cv2

24 import numpy as np
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25 from PIL import Image

26 import star_tracker

27

28 # --- Feature toggles

---------------------------------------------------------

29

30 APPLY_DESPIN = True

31 APPLY_LENS = False

32 APPLY_DENOISE = True

33 APPLY_FFT_NOTCH = False

34 APPLY_EDGE_TRACKING = True

35 APPLY_CIRCLE_FITS = True

36 APPLY_LIMB_PROFILES = True

37 APPLY_RESIDUAL_GLOW = False # column median subtract

38 APPLY_STAR_TRACKER = True

39 STAR_USE_DESPIN_MASK = False # if True , pass the despin overlap

mask into star tracker detection

40

41 # --- Paths

-------------------------------------------------------------------

42

43 SCIENCE_DIR = Path("/Users/vojtadeconinck/Downloads/

ImageAnalysis30300/JUNO␣Despin␣Images") / "ScienceCalibrated"

44 OUTPUT_DIR = Path("/Users/vojtadeconinck/Downloads/

ImageAnalysis30300/JUNO␣Despin␣Images") / "Combined"

45 MASK_OUTPUT_DIR = OUTPUT_DIR / "Masks"

46 STAR_CATALOG_PATH = Path("/Users/vojtadeconinck/Downloads/

ImageAnalysis30300/combined_stars.csv")

47

48 # --- Camera / geometry constants

--------------------------------------------

49
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50 OMEGA = np.array ([ -8.54302424e-05, -2.26443686e-04, -2.08965026e

-01], dtype=np.float64)

51 OMEGA_FRAME = "spacecraft" # "spacecraft" or "camera"

52 DELTA_T = 0.13 # seconds between odd and even fields

53

54 SC_TO_CHUD_MATRIX = np.array([

55 [0.99995302 , 0.00569167 , 0.00784704] ,

56 [0.00383956 , -0.97582589 , 0.21851563] ,

57 [0.00890106 , -0.21847523 , -0.9758019] ,

58 ])

59

60 EFL_MICRONS = 20_006.0

61 PIXEL_SIZE_X_MICRONS = 8.6

62 PIXEL_SIZE_Y_MICRONS = 8.3

63 PRINCIPAL_POINT = (383.0 , 257.0) # (cx , cy)

64 SENSOR_SHAPE = (580, 752) # (H, W)

65

66 # Lens distortion

67 LENS_KAPPA = 3.3e-8

68

69 # --- Denoise settings

--------------------------------------------------------

70

71

72 @dataclass

73 class FlattenConfig:

74 mask_percentile: float = 95.0

75 dilate_kernel: int = 11

76 sigma: float = 40.0

77 column_correction: bool = True

78 column_mask_percentile: float = 99.0

79 column_dilate: int = 5

80

81
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82 @dataclass

83 class DenoiseConfig:

84 apply_dark_frame: bool = False

85 dark_frame_path: str | None = None

86 dark_frame: np.ndarray | None = field(default=None , repr=False)

87

88 apply_column_median: bool = False

89

90 apply_flatten: bool = True

91 flatten: FlattenConfig = field(default_factory=FlattenConfig)

92

93 spike_mode: str = "gradient" # "mean" or "gradient"

94 spike_neighborhood: int = 1

95 spike_threshold: float = 45.0

96 gradient_threshold: float = 45.0

97

98 median_kernel: int = 3

99 gaussian_kernel: int = 0

100 gaussian_sigma: float = 0.0

101

102

103 DENOISE_SETTINGS = DenoiseConfig(

104 apply_dark_frame=False ,

105 dark_frame_path=str(Path("/Users/vojtadeconinck/Downloads/

ImageAnalysis30300/BlackRefImages/master_black.png")),

106 apply_column_median=False ,

107 apply_flatten=True ,

108 flatten=FlattenConfig (),

109 spike_mode="gradient",

110 spike_neighborhood =1,

111 spike_threshold =45.0 ,

112 gradient_threshold =45.0 ,

113 median_kernel =3,

114 gaussian_kernel =0,
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115 gaussian_sigma =0.0,

116 )

117

118 # --- Fourier notch default (legacy manual list)

-----------------------------

119

120 MANUAL_NOTCHES = [

121 (75, 0),

122 (115, 0),

123 (155, 0),

124 (0, 40),

125 (0, 80),

126 ]

127 NOTCH_RADIUS = 25.0

128

129 # --- Basic helpers

-----------------------------------------------------------

130

131

132 def _load_grayscale(path: Path) -> np.ndarray:

133 arr = np.array(Image.open(path))

134 if arr.ndim != 2:

135 raise ValueError(f"{path}␣is␣not␣a␣single -channel␣image.")

136 return arr

137

138

139 def _save_grayscale(data: np.ndarray , path: Path , dtype: np.dtype)

-> None:

140 info = np.iinfo(dtype)

141 clipped = np.clip(np.rint(data), info.min , info.max).astype(

dtype)

142 path.parent.mkdir(parents=True , exist_ok=True)

143 Image.fromarray(clipped).save(path)

144
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145

146 def _to_8bit(arr: np.ndarray , dtype: np.dtype) -> np.ndarray:

147 info = np.iinfo(dtype)

148 scaled = np.clip(arr , info.min , info.max) / float(info.max)

149 scaled *= 255.0

150 return np.clip(np.rint(scaled), 0, 255).astype(np.uint8)

151

152

153 # --- Lens correction

---------------------------------------------------------

154

155 def _build_lens_maps(kappa: float) -> tuple[np.ndarray , np.ndarray

]:

156 H, W = SENSOR_SHAPE

157 cx , cy = PRINCIPAL_POINT

158 pix_ratio = PIXEL_SIZE_Y_MICRONS / PIXEL_SIZE_X_MICRONS

159

160 x = np.arange(W, dtype=np.float32) - cx

161 y = (np.arange(H, dtype=np.float32)[:, None] - cy) * pix_ratio

162 r2 = x[None , :] * x[None , :] + y * y

163 S = 1.0 + kappa * r2

164

165 map_x = (x[None , :] * S + cx).astype(np.float32)

166 map_y = ((y * S) / pix_ratio + cy).astype(np.float32)

167 return map_x , map_y

168

169

170 def _apply_lens_correction(

171 img: np.ndarray ,

172 maps: tuple[np.ndarray , np.ndarray],

173 *,

174 interpolation: int = cv2.INTER_LINEAR ,

175 border_value: float = 0.0,

176 ) -> np.ndarray:
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177 map_x , map_y = maps

178 corrected = cv2.remap(

179 img.astype(np.float32),

180 map_x ,

181 map_y ,

182 interpolation=interpolation ,

183 borderMode=cv2.BORDER_CONSTANT ,

184 borderValue=border_value ,

185 )

186 return corrected

187

188

189 # --- Denoising

---------------------------------------------------------------

190

191 def _as_float(gray: np.ndarray) -> np.ndarray:

192 return gray.astype(np.float32 , copy=False) if gray.dtype != np.

float32 else gray

193

194

195 def _restore_dtype(clean: np.ndarray , dtype) -> np.ndarray:

196 if np.issubdtype(dtype , np.floating):

197 return clean.astype(dtype)

198 info = np.iinfo(dtype)

199 clipped = np.clip(np.rint(clean), info.min , info.max)

200 return clipped.astype(dtype)

201

202

203 def _load_dark_frame(path: str) -> np.ndarray:

204 arr = cv2.imread(path , cv2.IMREAD_UNCHANGED)

205 if arr is None:

206 raise FileNotFoundError(f"Dark␣frame␣not␣found:␣{path}")

207 if arr.ndim != 2:
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208 raise ValueError(f"Dark␣frame␣must␣be␣single -channel:␣{path

}")

209 return arr

210

211

212 def subtract_dark_frame(gray: np.ndarray , dark: np.ndarray) -> np.

ndarray:

213 if gray.shape != dark.shape:

214 raise ValueError(f"Dark␣frame␣shape␣{dark.shape}␣does␣not␣

match␣image␣{gray.shape}")

215 return _as_float(gray) - _as_float(dark)

216

217

218 def _build_mask(arr: np.ndarray , percentile: float , dilate_kernel:

int) -> np.ndarray:

219 thr = np.percentile(arr , percentile)

220 mask = arr > thr

221 k = max(1, int(dilate_kernel))

222 if k > 1:

223 kernel = np.ones((k, k), np.uint8)

224 mask = cv2.dilate(mask.astype(np.uint8), kernel , iterations

=1).astype(bool)

225 return mask

226

227

228 def _column_correction(flat: np.ndarray , config: FlattenConfig) ->

np.ndarray:

229 work = flat.copy()

230 mask = _build_mask(work , config.column_mask_percentile , config.

column_dilate)

231 H, W = work.shape

232 for x in range(W):

233 col = work[:, x]

234 good = ~mask[:, x]
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235 if not np.any(good):

236 continue

237 offset = np.median(col[good])

238 work[:, x] -= offset

239 return work

240

241

242 def column_median_subtract(gray: np.ndarray) -> np.ndarray:

243 f = _as_float(gray)

244 med = np.median(f, axis=0, keepdims=True)

245 return f - med

246

247

248 def flatten_background(gray: np.ndarray , config: FlattenConfig |

None = None) -> np.ndarray:

249 if gray.ndim != 2:

250 raise ValueError("flatten_background␣expects␣a␣single -

channel␣image.")

251 cfg = config or FlattenConfig ()

252 f = _as_float(gray)

253

254 mask = _build_mask(f, cfg.mask_percentile , cfg.dilate_kernel)

255 bg_level = np.median(f[~mask]) if np.any(~mask) else float(np.

median(f))

256

257 f_bgfit = f.copy()

258 f_bgfit[mask] = bg_level

259

260 bg = cv2.GaussianBlur(f_bgfit , (0, 0), sigmaX=cfg.sigma , sigmaY

=cfg.sigma)

261 f_flat = f - bg

262

263 if cfg.column_correction:

264 f_flat = _column_correction(f_flat , cfg)
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265 return f_flat

266

267

268 def remove_radiation_spikes(gray: np.ndarray , neighborhood: int ,

threshold: float) -> np.ndarray:

269 if gray.ndim != 2:

270 raise ValueError("remove_radiation_spikes␣expects␣a␣single -

channel␣image.")

271 n = max(1, int(neighborhood))

272 k = 2 * n + 1

273 f = _as_float(gray)

274 kernel = np.ones((k, k), dtype=np.float32)

275 summed = cv2.filter2D(f, -1, kernel , borderType=cv2.

BORDER_REFLECT)

276 neighbor_sum = summed - f

277 neighbor_count = k * k - 1

278 neighbor_mean = neighbor_sum / float(neighbor_count)

279 mask = (f - neighbor_mean) > threshold

280 cleaned = f.copy()

281 cleaned[mask] = neighbor_mean[mask]

282 return cleaned

283

284

285 def remove_gradient_spikes(gray: np.ndarray , threshold: float) ->

np.ndarray:

286 if gray.ndim != 2:

287 raise ValueError("remove_gradient_spikes␣expects␣a␣single -

channel␣image.")

288 f = _as_float(gray)

289 out = f.copy()

290

291 center = f[1:-1, 1:-1]

292 left = f[1:-1, :-2]

293 right = f[1:-1, 2:]
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294 up = f[:-2, 1:-1]

295 down = f[2:, 1:-1]

296

297 horiz_peak = (center - left > threshold) & (center - right >

threshold)

298 vert_peak = (center - up > threshold) & (center - down >

threshold)

299 mask = horiz_peak & vert_peak

300

301 if np.any(mask):

302 neighbors = np.stack([left , right , up , down], axis =0)

303 med = np.median(neighbors , axis =0)

304 out_view = out[1:-1, 1:-1]

305 out_view[mask] = med[mask]

306 return out

307

308

309 def clean_image(gray: np.ndarray , config: DenoiseConfig | None =

None) -> np.ndarray:

310 if gray.ndim != 2:

311 raise ValueError("clean_image␣expects␣a␣single -channel␣

image.")

312 cfg = config or DenoiseConfig ()

313 work = _as_float(gray)

314

315 if cfg.apply_dark_frame:

316 dark = cfg.dark_frame

317 if dark is None and cfg.dark_frame_path:

318 dark = _load_dark_frame(cfg.dark_frame_path)

319 cfg.dark_frame = dark

320 if dark is not None:

321 work = subtract_dark_frame(work , dark)

322

323 if cfg.apply_column_median:
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324 work = column_median_subtract(work)

325

326 if cfg.apply_flatten:

327 work = flatten_background(work , cfg.flatten)

328

329 if cfg.spike_mode == "gradient":

330 work = remove_gradient_spikes(work , cfg.gradient_threshold)

331 else:

332 work = remove_radiation_spikes(work , cfg.spike_neighborhood

, cfg.spike_threshold)

333

334 if cfg.median_kernel and cfg.median_kernel >= 3:

335 k = cfg.median_kernel if cfg.median_kernel % 2 == 1 else

cfg.median_kernel + 1

336 work = cv2.medianBlur(work.astype(np.float32), k)

337

338 if cfg.gaussian_kernel and cfg.gaussian_kernel > 0:

339 k = cfg.gaussian_kernel if cfg.gaussian_kernel % 2 == 1

else cfg.gaussian_kernel + 1

340 work = cv2.GaussianBlur(work , (k, k), cfg.gaussian_sigma)

341

342 return _restore_dtype(work , gray.dtype)

343

344

345 # --- Despin (per -pixel rotation)

--------------------------------------------

346

347 def rodrigues(omega: np.ndarray , delta_t: float) -> np.ndarray:

348 theta = float(np.linalg.norm(omega) * delta_t)

349 if theta == 0.0:

350 return np.eye(3, dtype=np.float64)

351 k = omega / np.linalg.norm(omega)

352 kx , ky , kz = k

353 K = np.array(
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354 [

355 [0.0, -kz, ky],

356 [kz , 0.0, -kx],

357 [-ky , kx , 0.0],

358 ],

359 dtype=np.float64 ,

360 )

361 sin_t = np.sin(theta)

362 cos_t = np.cos(theta)

363 return np.eye(3) + sin_t * K + (1.0 - cos_t) * (K @ K)

364

365

366 def _pixel_rays(x_full: np.ndarray , y_full: np.ndarray) -> np.

ndarray:

367 cx , cy = PRINCIPAL_POINT

368 x_cam = (x_full - cx) * (PIXEL_SIZE_X_MICRONS / EFL_MICRONS)

369 y_cam = (y_full - cy) * (PIXEL_SIZE_Y_MICRONS / EFL_MICRONS)

370 rays = np.stack([x_cam , y_cam , np.ones_like(x_cam)], axis=-1)

371 return rays

372

373

374 def _project_to_full_pixels(rays: np.ndarray) -> Tuple[np.ndarray ,

np.ndarray ]:

375 cx , cy = PRINCIPAL_POINT

376 x = rays [..., 0] / rays [..., 2]

377 y = rays [..., 1] / rays [..., 2]

378 u = x * (EFL_MICRONS / PIXEL_SIZE_X_MICRONS) + cx

379 v = y * (EFL_MICRONS / PIXEL_SIZE_Y_MICRONS) + cy

380 return u, v

381

382

383 def _warp_even_field_to_reference(

384 even_img: np.ndarray ,

385 output_rows_full: np.ndarray ,
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386 R_odd_to_even: np.ndarray ,

387 ) -> tuple[np.ndarray , np.ndarray ]:

388 H_full , W = SENSOR_SHAPE

389 assert even_img.shape [0] == H_full // 2

390

391 x_full = np.broadcast_to(np.arange(W, dtype=np.float64), (

output_rows_full.size , W))

392 y_full = np.broadcast_to(output_rows_full [:, None]. astype(np.

float64), (output_rows_full.size , W))

393

394 rays_odd = _pixel_rays(x_full , y_full).reshape(-1, 3)

395 rays_even = (R_odd_to_even @ rays_odd.T).T

396

397 u_full , v_full = _project_to_full_pixels(rays_even)

398 v_even_idx = (v_full - 1.0) * 0.5

399

400 x = u_full.ravel ()

401 y = v_even_idx.ravel()

402 H_even , W_even = even_img.shape

403

404 valid = (x >= 0) & (x <= W_even - 1) & (y >= 0) & (y <= H_even

- 1)

405

406 x0 = np.clip(np.floor(x).astype(np.int64), 0, W_even - 1)

407 y0 = np.clip(np.floor(y).astype(np.int64), 0, H_even - 1)

408 x1 = np.clip(x0 + 1, 0, W_even - 1)

409 y1 = np.clip(y0 + 1, 0, H_even - 1)

410

411 wx = x - x0

412 wy = y - y0

413

414 Ia = even_img[y0 , x0]

415 Ib = even_img[y0 , x1]

416 Ic = even_img[y1 , x0]

Page 73 of 140



APPENDIX A. ADDITIONAL MATERIAL 74

417 Id = even_img[y1 , x1]

418

419 sampled = (

420 (1 - wx) * (1 - wy) * Ia

421 + wx * (1 - wy) * Ib

422 + (1 - wx) * wy * Ic

423 + wx * wy * Id

424 )

425 sampled [~valid] = 0.0

426 valid_mask = valid.reshape(output_rows_full.size , W).astype(np.

uint8)

427 return sampled.reshape(output_rows_full.size , W).astype(np.

float32), valid_mask

428

429

430 def recombine_with_rotation(img: np.ndarray , omega: np.ndarray ,

delta_t: float) -> tuple[np.ndarray , np.ndarray , np.ndarray ]:

431 H, W = img.shape

432 if (H, W) != SENSOR_SHAPE:

433 raise ValueError(f"Unexpected␣image␣shape␣{img.shape};␣

expected␣{SENSOR_SHAPE}")

434

435 odd = img[0::2 , :]

436 even = img[1::2, :]

437

438 R_odd_to_even = rodrigues(omega , delta_t)

439

440 odd_rows_full = np.arange(0, H, 2)

441 even_rows_full = np.arange(1, H, 2)

442

443 aligned_even_on_odd , _ = _warp_even_field_to_reference(even ,

odd_rows_full , R_odd_to_even)

444 aligned_even_on_even , mask_on_even =

_warp_even_field_to_reference(even , even_rows_full ,
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R_odd_to_even)

445

446 recombined = np.empty_like(img , dtype=np.float32)

447 recombined [0::2, :] = odd

448 recombined [1::2, :] = aligned_even_on_even

449

450 mask_full = np.empty_like(img , dtype=np.uint8)

451 mask_full [0::2, :] = 1

452 mask_full [1::2, :] = mask_on_even

453 return recombined , mask_full , R_odd_to_even

454

455

456 # --- FFT / notch filtering

---------------------------------------------------

457

458 def fft_shift(mag: np.ndarray) -> np.ndarray:

459 return np.fft.fftshift(mag , axes=(0, 1))

460

461

462 def make_symmetric_notches(manual: Sequence[Tuple[int , int]], width

: int , height: int) -> list[Tuple[int , int ]]:

463 out: list[Tuple[int , int]] = []

464 for x, y in manual:

465 out.append ((x, y))

466 out.append ((( width - x) % width , (height - y) % height))

467 return out

468

469

470 def apply_gaussian_notch_filter(complex_fft: np.ndarray ,

notch_centers: Sequence[Tuple[int , int]], radius: float) -> None

:

471 rows , cols = complex_fft.shape [:2]

472 sigma = radius / 2.0

473 two_sigma2 = 2.0 * sigma * sigma
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474 yy , xx = np.mgrid [0:rows , 0:cols]

475 H = np.ones((rows , cols), dtype=np.float32)

476 for cx, cy in notch_centers:

477 d2 = (xx - cx) ** 2 + (yy - cy) ** 2

478 notch = 1.0 - np.exp(-d2 / two_sigma2)

479 H *= notch.astype(np.float32)

480 complex_fft [..., 0] *= H

481 complex_fft [..., 1] *= H

482

483

484 def fourier_notch_reconstruct(img: np.ndarray , manual_notches:

Sequence[Tuple[int , int]], radius: float) -> np.ndarray:

485 padded = cv2.copyMakeBorder(

486 img ,

487 top=0,

488 bottom=cv2.getOptimalDFTSize(img.shape [0]) - img.shape[0],

489 left=0,

490 right=cv2.getOptimalDFTSize(img.shape [1]) - img.shape [1],

491 borderType=cv2.BORDER_CONSTANT ,

492 value=0,

493 )

494 planes = [padded.astype(np.float32), np.zeros_like(padded ,

dtype=np.float32)]

495 complex_i = cv2.merge(planes)

496 cv2.dft(complex_i , complex_i)

497 complex_i = fft_shift(complex_i)

498

499 h, w = complex_i.shape [:2]

500 notches = make_symmetric_notches(manual_notches , w, h)

501 apply_gaussian_notch_filter(complex_i , notches , radius)

502

503 complex_i = fft_shift(complex_i)

504 reconstructed = cv2.idft(complex_i , flags=cv2.DFT_REAL_OUTPUT |

cv2.DFT_SCALE)
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505 return reconstructed.astype(np.float32)

506

507

508 # --- Edge tracking + circles

-------------------------------------------------

509

510 def _column_gradients(gray: np.ndarray , mask: np.ndarray | None =

None) -> np.ndarray:

511 """ Return |vertical gradient| per column; masked values set to

0."""

512 col_diff = np.abs(np.diff(gray.astype(np.int32), axis =0))

513 if mask is not None:

514 m = mask[1:, :] & mask[:-1, :]

515 col_diff = np.where(m, col_diff , 0)

516 return col_diff

517

518

519 def _find_strongest_edge_in_column(gray: np.ndarray , col: int) ->

int:

520 grad = np.abs(np.diff(gray[:, col]. astype(np.int32)))

521 if grad.size == 0:

522 return -1

523 idx = int(np.argmax(grad))

524 return idx if grad[idx] > 0 else -1

525

526

527 def _compute_column_threshold(gray: np.ndarray , col: int , k: float

= 1.0) -> int:

528 grads = np.abs(np.diff(gray[:, col]. astype(np.int32)))

529 mean = grads.mean() if grads.size else 0.0

530 std = grads.std() if grads.size else 0.0

531 return int(round(mean + k * std))

532

533
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534 def track_edge_andrey(gray: np.ndarray , start_col: int = 0, k:

float = 3.0, searchrange: int = 3) -> list[Tuple[int , int ]]:

535 """

536 Original C++-style tracker: per column strongest local gradient

vs adaptive threshold ,

537 zero -order hold if below threshold.

538 """

539 edges: list[Tuple[int , int]] = []

540 current_col = start_col

541 current_row = _find_strongest_edge_in_column(gray , current_col)

542 if current_row == -1:

543 return edges

544 edges.append (( current_col , current_row))

545

546 for current_col in range(start_col + 1, gray.shape [1]):

547 best_row = current_row

548 best_val = -1

549 for offset in range(-searchrange , searchrange + 1):

550 r = current_row + offset

551 if r < 0 or r >= gray.shape [0] - 1:

552 continue

553 grad = abs(int(gray[r + 1, current_col ]) - int(gray[r,

current_col ]))

554 if grad > best_val:

555 best_val = grad

556 best_row = r

557 thresh = _compute_column_threshold(gray , current_col , k)

558 if best_val >= thresh:

559 current_row = best_row

560 edges.append (( current_col , current_row))

561 if current_row > gray.shape [0] - 20:

562 return edges

563 return edges

564
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565

566 def fit_circle_ls(points: Sequence[Tuple[float , float ]]) -> tuple[

float , float , float] | None:

567 if len(points) < 3:

568 return None

569 A = []

570 Bv = []

571 for x, y in points:

572 A.append ([x, y, 1.0])

573 Bv.append(x * x + y * y)

574 A = np.asarray(A, dtype=np.float64)

575 Bv = np.asarray(Bv, dtype=np.float64)

576 sol , _, _, _ = np.linalg.lstsq(A, Bv, rcond=None)

577 a, b, c = sol

578 cx = a / 2.0

579 cy = b / 2.0

580 r = np.sqrt(c + cx * cx + cy * cy)

581 return cx, cy , r

582

583

584 def fit_circle_hyper(points: Sequence[Tuple[float , float ]]) ->

tuple[float , float , float] | None:

585 n = len(points)

586 if n < 3:

587 return None

588 pts = np.asarray(points , dtype=np.float64)

589 mean = pts.mean(axis =0)

590 x = pts[:, 0] - mean [0]

591 y = pts[:, 1] - mean [1]

592 z = x * x + y * y

593

594 Mxx = np.mean(x * x)

595 Myy = np.mean(y * y)

596 Mxy = np.mean(x * y)
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597 Mxz = np.mean(x * z)

598 Myz = np.mean(y * z)

599 Mzz = np.mean(z * z)

600 mean_z = np.mean(z)

601

602 M = np.array(

603 [

604 [Mzz , Mxz , Myz , mean_z],

605 [Mxz , Mxx , Mxy , 0.0],

606 [Myz , Mxy , Myy , 0.0],

607 [mean_z , 0.0, 0.0, 1.0],

608 ]

609 )

610

611 N_inv = np.array(

612 [

613 [0.0, 0.0, 0.0, 0.5],

614 [0.0, 1.0, 0.0, 0.0],

615 [0.0, 0.0, 1.0, 0.0],

616 [0.5, 0.0, 0.0, -2.0 * mean_z],

617 ]

618 )

619

620 P = N_inv @ M

621 eigvals , eigvecs = np.linalg.eig(P)

622 mask_real = np.isclose(eigvals.imag , 0.0, atol=1e-10)

623 eigvals = eigvals.real[mask_real]

624 eigvecs = eigvecs[:, mask_real]

625

626 pos = eigvals[eigvals > 1e-12]

627 if pos.size == 0:

628 return None

629 idx = int(np.argmin(pos))

630 v = eigvecs[:, np.where(eigvals > 1e-12) [0][ idx ]]. real
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631 A, B, C, D = v

632 if abs(A) < 1e-7:

633 return None

634 det = B * B + C * C - 4 * A * D

635 if det < 0:

636 return None

637 cx = -B / (2 * A)

638 cy = -C / (2 * A)

639 r = np.sqrt(det) / (2 * abs(A))

640 return cx + mean[0], cy + mean[1], r

641

642

643 # --- Limb profiles

-----------------------------------------------------------

644

645 def get_line_profile(img: np.ndarray , start: Tuple[float , float],

end: Tuple[float , float]) -> list[int]:

646 """

647 Sample pixel values along the line from start to end (inclusive

).

648 Uses a simple integer -step interpolation (Bresenham -like) to

avoid cv2.LineIterator.

649 """

650 H, W = img.shape

651 x0 , y0 = map(int , map(round , start))

652 x1 , y1 = map(int , map(round , end))

653

654 dx = x1 - x0

655 dy = y1 - y0

656 steps = max(abs(dx), abs(dy))

657 if steps == 0:

658 if 0 <= x0 < W and 0 <= y0 < H:

659 return [int(img[y0 , x0])]

660 return []
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661

662 xs = np.linspace(x0, x1, steps + 1)

663 ys = np.linspace(y0, y1, steps + 1)

664 vals: list[int] = []

665 for x, y in zip(xs , ys):

666 xi , yi = int(round(x)), int(round(y))

667 if 0 <= xi < W and 0 <= yi < H:

668 vals.append(int(img[yi , xi]))

669 return vals

670

671

672 def analyze_limb_profiles(

673 img: np.ndarray ,

674 center: Tuple[float , float],

675 radius: float ,

676 scan_length: int = 160,

677 margin: int = 20,

678 step_deg: int = 1,

679 ) -> list[dict]:

680 H, W = img.shape

681 cx , cy = center

682 results: list[dict] = []

683 for angle in range(0, 360, step_deg):

684 rad = np.deg2rad(angle)

685 r_inner = radius - margin

686 r_outer = radius + (scan_length - margin)

687 start = (cx + r_inner * np.cos(rad), cy + r_inner * np.sin(

rad))

688 end = (cx + r_outer * np.cos(rad), cy + r_outer * np.sin(

rad))

689 if not (0 <= start [0] < W and 0 <= start [1] < H and 0 <=

end [0] < W and 0 <= end[1] < H):

690 continue

691 profile = get_line_profile(img , start , end)
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692 grads = [abs(profile[i + 1] - profile[i]) for i in range(

len(profile) - 1)]

693 if grads:

694 max_grad = max(grads)

695 max_pos = grads.index(max_grad)

696 else:

697 max_grad = 0

698 max_pos = 0

699 results.append(

700 {

701 "angle_deg": angle ,

702 "max_grad": max_grad ,

703 "max_grad_pos": max_pos ,

704 "profile_len": len(profile),

705 }

706 )

707 return results

708

709

710 # --- Star tracker data structures

-------------------------------------------

711 # --- Star tracker integration (delegated to star_tracker.py)

------------------

712

713 STAR_MAX_CATALOG_MAG = 8.0

714

715 def run_star_tracker_wrapper(

716 image_path: str ,

717 catalog_path: str ,

718 max_catalog_mag: float = 8.0,

719 output_path: str = "annotated.png",

720 detection_mask: Optional[np.ndarray] = None ,

721 ):
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722 """ Delegate to star_tracker.run_star_tracker for full

functionality."""

723 star_tracker.run_star_tracker(

724 image_path=image_path ,

725 catalog_path=catalog_path ,

726 max_catalog_mag=max_catalog_mag ,

727 output_path=output_path ,

728 detection_mask=detection_mask ,

729 )

730

731

732 # --- main

----------------------------------------------------------------

733

734

735 def process_folder(

736 science_dir: Path ,

737 output_dir: Path ,

738 omega: np.ndarray ,

739 delta_t_s: float ,

740 denoise_config: DenoiseConfig | None = None ,

741 lens_maps: tuple[np.ndarray , np.ndarray] | None = None ,

742 ) -> List[Path]:

743 frames = sorted(science_dir.glob("IMD_*.png"))

744 if not frames:

745 print(f"No␣science␣frames␣found␣in␣{science_dir}")

746 return []

747

748 written: List[Path] = []

749 for frame in frames:

750 raw = _load_grayscale(frame)

751 dtype = raw.dtype

752 work = raw.astype(np.float32)

753
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754 if APPLY_DESPIN:

755 recombined , mask_full , R = recombine_with_rotation(work

, omega , delta_t_s)

756 work = recombined

757 work[mask_full == 0] = 0

758 else:

759 mask_full = np.ones_like(work , dtype=np.uint8)

760 R = np.eye(3, dtype=np.float64)

761

762 if APPLY_LENS and lens_maps is not None:

763 work = _apply_lens_correction(work , lens_maps)

764 mask_full = _apply_lens_correction(mask_full , lens_maps

, interpolation=cv2.INTER_NEAREST)

765 mask_full = (mask_full > 0.5).astype(np.uint8)

766 work[mask_full == 0] = 0

767

768 if APPLY_RESIDUAL_GLOW:

769 work = column_median_subtract(work)

770

771 if APPLY_FFT_NOTCH:

772 work = fourier_notch_reconstruct(work , MANUAL_NOTCHES ,

NOTCH_RADIUS)

773

774 if APPLY_DENOISE and denoise_config is not None:

775 work = clean_image(work , denoise_config)

776

777 # Analysis -only steps

778 edges: list[Tuple[int , int]] = []

779 circle_ls: Optional[Tuple[float , float , float]] = None

780 circle_hyper: Optional[Tuple[float , float , float ]] = None

781 limb_stats: list[dict] = []

782

783 if APPLY_EDGE_TRACKING:

784 edge_img = work.astype(np.uint8)
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785 H_img = edge_img.shape [0]

786 # Base ROI: lower portion + overlap mask

787 roi_start = int (0.5 * H_img)

788 edge_mask = np.ones_like(edge_img , dtype=bool)

789 edge_mask [:roi_start , :] = False

790 edge_mask[mask_full == 0] = False

791 # Brightness gate to avoid tracking pure background

792 valid_pixels = edge_img[edge_mask]

793 if valid_pixels.size > 0:

794 bright_thresh = np.percentile(valid_pixels , 50.0)

795 bright_mask = edge_img >= bright_thresh

796 edge_mask &= bright_mask

797 edge_img_roi = edge_img.copy()

798 edge_img_roi [~ edge_mask] = 0

799 # Estimate dominant gradient row to focus search band

800 row_energy = np.sum(np.abs(np.diff(edge_img_roi.astype(

np.int32), axis =0)), axis =1)

801 if np.any(row_energy):

802 peak_row = int(np.argmax(row_energy))

803 else:

804 peak_row = int (0.75 * H_img)

805 band_half = 60

806 band = (max(1, peak_row - band_half), min(H_img - 1,

peak_row + band_half))

807 edges = track_edge_andrey(edge_img_roi , start_col =10, k

=3.0, searchrange =3)

808

809 if APPLY_CIRCLE_FITS and len(edges) >= 8:

810 circle_ls = fit_circle_ls(edges)

811 circle_hyper = fit_circle_hyper(edges)

812

813 if APPLY_LIMB_PROFILES and circle_ls:

814 cx , cy , radius = circle_ls
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815 limb_stats = analyze_limb_profiles(work.astype(np.uint8

), (cx , cy), radius)

816

817 # Optional visualization of edge + fits

818 if APPLY_EDGE_TRACKING:

819 # Use the same dynamic range as the saved output (no

extra normalization to avoid boosting noise)

820 overlay_base = _to_8bit(work , dtype)

821 overlay = cv2.cvtColor(overlay_base , cv2.COLOR_GRAY2BGR

)

822 # Red points: edge tracking samples

823 for x, y in edges:

824 cv2.circle(overlay , (int(x), int(y)), 1, (0, 0,

255), -1, lineType=cv2.LINE_AA)

825 # Blue line: LS fit (Kasa)

826 if circle_ls:

827 cx_l , cy_l , r_l = circle_ls

828 cv2.circle(overlay , (int(round(cx_l)), int(round(

cy_l))), int(round(r_l)), (255, 0, 0), 2,

lineType=cv2.LINE_AA)

829 # Yellow line: Hyper fit

830 if circle_hyper:

831 cx_h , cy_h , r_h = circle_hyper

832 cv2.circle(overlay , (int(round(cx_h)), int(round(

cy_h))), int(round(r_h)), (0, 255, 255), 2,

lineType=cv2.LINE_AA)

833 # Write overlay alongside the main output

834 overlay_path = output_dir / f"{frame.stem}_limb_overlay

.png"

835 cv2.imwrite(str(overlay_path), overlay)

836

837 out_path = output_dir / frame.name

838 _save_grayscale(work , out_path , dtype)

839 if APPLY_DESPIN:
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840 mask_path = MASK_OUTPUT_DIR / frame.name

841 _save_grayscale(mask_full , mask_path , np.uint8)

842

843 if APPLY_STAR_TRACKER:

844 try:

845 annotated_path = out_path.with_name(f"{out_path.

stem}_annotated.png")

846 run_star_tracker_wrapper(

847 image_path=str(out_path),

848 catalog_path=str(STAR_CATALOG_PATH),

849 max_catalog_mag=STAR_MAX_CATALOG_MAG ,

850 output_path=str(annotated_path),

851 detection_mask=mask_full if (APPLY_DESPIN and

STAR_USE_DESPIN_MASK) else None ,

852 )

853 print(f"␣␣star␣tracker␣annotated␣->␣{annotated_path

}")

854 except Exception as exc:

855 print(f"␣␣star␣tracker␣failed:␣{exc}")

856

857 # Report

858 tag = []

859 if APPLY_DESPIN:

860 theta_deg = np.linalg.norm(omega) * delta_t_s * 180.0 /

np.pi

861 tag.append(f"dtheta ={ theta_deg :.6f}deg")

862 if APPLY_LENS:

863 tag.append("lens")

864 if APPLY_DENOISE:

865 tag.append("denoise")

866 if APPLY_FFT_NOTCH:

867 tag.append("fft")

868 if APPLY_RESIDUAL_GLOW:

869 tag.append("colmed")
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870 summary = ",".join(tag) if tag else "raw"

871 print(f"{frame.name}␣->␣{out_path}␣[{ summary }]")

872 if circle_ls:

873 cx , cy , r = circle_ls

874 print(f"␣␣circle␣LS:␣cx={cx:.2f},␣cy={cy:.2f},␣r={r:.2f

}")

875 if circle_hyper:

876 cx , cy , r = circle_hyper

877 print(f"␣␣circle␣Hyper:␣cx={cx:.2f},␣cy={cy:.2f},␣r={r

:.2f}")

878 if limb_stats:

879 best = max(limb_stats , key=lambda d: d["max_grad"])

880 print(f"␣␣limb␣max␣grad␣{best[’max_grad ’]}␣at␣angle␣{

best[’angle_deg ’]}␣deg")

881 written.append(out_path)

882 return written

883

884

885 def main() -> None:

886 output_dir = OUTPUT_DIR

887 output_dir.mkdir(parents=True , exist_ok=True)

888 denoise_cfg = DENOISE_SETTINGS if APPLY_DENOISE else None

889 if denoise_cfg and denoise_cfg.apply_dark_frame and denoise_cfg

.dark_frame is None and denoise_cfg.dark_frame_path:

890 denoise_cfg.dark_frame = _load_grayscale(Path(denoise_cfg.

dark_frame_path))

891

892 omega = np.array(OMEGA , dtype=np.float64)

893 if OMEGA_FRAME == "spacecraft":

894 omega = np.array(SC_TO_CHUD_MATRIX @ omega , dtype=np.

float64)

895

896 lens_maps = _build_lens_maps(LENS_KAPPA) if APPLY_LENS else

None
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897

898 process_folder(

899 science_dir=SCIENCE_DIR ,

900 output_dir=output_dir ,

901 omega=omega ,

902 delta_t_s=DELTA_T ,

903 denoise_config=denoise_cfg ,

904 lens_maps=lens_maps ,

905 )

906

907

908 if __name__ == "__main__":

909 main()

Listing A.1: Main script

A.2.2 Star tracker script

1 import numpy as np

2 import cv2

3 from dataclasses import dataclass

4 from typing import List , Tuple , Dict , Optional

5 import math

6 import re

7 import csv

8 from pathlib import Path

9 from denoising import DenoiseConfig , FlattenConfig , clean_image

10

11

12 # ------------------------------

13 # Data structures

14 # ------------------------------

15

16 @dataclass

17 class DetectedStar:
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18 x: float # pixel x (column)

19 y: float # pixel y (row)

20 flux: float # integrated brightness

21 ray_cam: Optional[np.ndarray] = None # 3D unit vector in

camera frame

22 catalog_idx: Optional[int] = None # catalog index after

matching

23

24

25 @dataclass

26 class ImageInputConfig:

27 """ Configuration for loading the input image with optional

rotation/resizing."""

28 path: str

29 rotate_deg: float = 0.0 # CCW rotation for

processing

30 resize_to: Optional[Tuple[int , int]] = None # (width , height)

in px

31

32

33 @dataclass

34 class CatalogStar:

35 name: str

36 ra_deg: float

37 dec_deg: float

38 mag: float

39 vec_inertial: np.ndarray

40

41

42 @dataclass

43 class ProcessingOptions:

44 """ Processing toggles for star detection."""

45 background_subtraction: bool = False

46 background_kernel: int = 51
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47 normalize: bool = False

48 threshold_multiplier: float = 2.5

49 morph_open: bool = False

50 morph_kernel: int = 3

51 morph_iterations: int = 1

52 min_area: Optional[int] = 2

53 max_area: Optional[int] = 20000

54 max_stars: int = 200

55 saturated_threshold: int = 225

56 allow_oversized_saturated: bool = True

57

58

59 def _radec_to_vec(ra_deg: float , dec_deg: float) -> np.ndarray:

60 ra = math.radians(ra_deg)

61 dec = math.radians(dec_deg)

62 x = math.cos(dec) * math.cos(ra)

63 y = math.cos(dec) * math.sin(ra)

64 z = math.sin(dec)

65 return np.array([x, y, z], dtype=np.float64)

66

67 # ------------------------------

68 # 1. JUNO ASC (CHU -D) CONSTANTS

69 # ------------------------------

70 # Hardware values from the documentation

71 JUNO_HARDWARE_PARAMS = {

72 "efl_um": 20006.0 , # Effective Focal Length

73 "pixel_x_um": 8.6, # Pixel size X (um)

74 "pixel_y_um": 8.3, # Pixel size Y (um)

75 "res_x": 752.0, # Native width

76 "res_y": 580.0, # Native height

77 "cx_hardware": 383.0 , # Native optical center X

78 "cy_hardware": 257.0 , # Native optical center Y

79 "kappa": 3.3e-8 # Distortion coefficient (small but

included)
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80 }

81

82 # JUNO ASC (CHU -D) lens parameters

83 LENS_JUNO_ASC = {

84 # derived focal lengths in pixels

85 "fx": 20006.0 / 8.6, # ~2326.28 px

86 "fy": 20006.0 / 8.3, # ~2410.36 px

87 "cx": 383.0,

88 "cy": 257.0,

89 "kappa": 3.3e-8, # single -term radial distortion

90 "W": 752,

91 "H": 580,

92 }

93

94 # ------------------------------

95 # Star -tracker runconfig (adjust for your frame/catalog)

96 # ------------------------------

97 STAR_IMAGE_PATH = Path("JUNO␣Despin␣Images") / "Despinned" / "

Denoised"

98 STAR_IMAGE_FALLBACK = Path("JUNO␣Despin␣Images") / "Despinned" / "

IMD_621530842 .422424. png"

99 # Use a Gaia/HIP CSV as the primary catalog for labeling.

100 STAR_CATALOG_PATH = Path("/Users/vojtadeconinck/Downloads/

ImageAnalysis30300/combined_stars.csv")

101 STAR_OUTPUT_PATH = Path("annotated.png")

102 STAR_MAX_CATALOG_MAG = 8.0

103 STAR_ROTATE_DEG = 0.0

104 STAR_RESIZE_TO: Optional[Tuple[int , int]] = None

105 STAR_FLIP_CODE: Optional[int] = None # None (no flip), 0=vertical ,

1=horizontal , -1=both

106 STAR_MIRROR_X_IN_RAYS = True # mirror camera -x in the ray

mapping instead of flipping the image

107 STAR_PROCESSING_MODE = "real" # fallback preset
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108 STAR_PROCESSING_OPTIONS: Optional[ProcessingOptions] =

ProcessingOptions(

109 background_subtraction=True ,

110 background_kernel =61,

111 normalize=True ,

112 threshold_multiplier =1.4,

113 morph_open=True ,

114 morph_kernel =3,

115 morph_iterations =1,

116 min_area =10,

117 max_area =600,

118 max_stars =400,

119 saturated_threshold =220,

120 allow_oversized_saturated=True ,

121 )

122 STAR_CAMERA_OVERRIDE: Optional[Dict[str , float ]] = None

123 STAR_MASK_BORDERS_PX = (20, 80, 20, 20) # (top , bottom , left ,

right) mask away overlap -loss edges

124 # Debug output settings

125 STAR_SAVE_DEBUG_INTERMEDIATES = True

126 STAR_DEBUG_DIR = Path("JUNO␣Despin␣Images") / "star_tracker_debug"

127 # Precomputed valid -region masks (odd/even overlap) produced by

juno_despin

128 STAR_VALID_MASK_DIR = Path("JUNO␣Despin␣Images") / "Despinned" / "

Masks"

129 # Jupiter glare mask settings (optional)

130 STAR_SAVE_JUPITER_MASK = True

131 STAR_JUPITER_PERCENTILE = 90.0 # high percentile to isolate glare

(lower to include halo)

132 STAR_JUPITER_MIN_AREA = 3000 # minimum glare component area;

stars are << this area

133 STAR_JUPITER_MIN_Y_FRAC = 0.25 # only suppress blobs in lower part

of image

134 STAR_JUPITER_DILATE = 35 # dilate glare mask to include halo
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135 STAR_JUPITER_PAD_Y = 0 # no rectangular padding , rely on

dilation

136 STAR_JUPITER_PAD_X = 0

137 STAR_DISABLE_JUPITER_FALLBACK = True # skip row -mean fallback if

no blob found

138 STAR_JUPITER_EXCLUDE_STAR_MAX_AREA = 400 # components <= this area

are treated as stars , not glare

139 # Auto -build overlap mask from the input image instead of fixed

borders (used if no precomputed mask)

140 STAR_AUTO_OVERLAP_MASK = True

141 STAR_AUTO_MASK_PERCENTILE = 70.0 # percentile to threshold non -

zero region

142 STAR_AUTO_MASK_CLOSE_KERNEL = 9 # odd kernel for closing

143 STAR_AUTO_MASK_ERODE = 2 # pixels to erode after closing (

set 0 to skip)

144

145 APPLY_DENOISING = False

146 STAR_DENOISE_SETTINGS = DenoiseConfig(

147 apply_flatten=False ,

148 spike_neighborhood =1,

149 spike_threshold =40.0 ,

150 median_kernel =3,

151 gaussian_kernel =0,

152 gaussian_sigma =0.0,

153 )

154 STAR_ATTITUDE_MIN_INLIERS = 4

155 STAR_ATTITUDE_MAX_ERR_DEG = 0.2

156 STAR_ATTITUDE_MAX_ITER = 3000

157 # Name -lookup table to map HIP/Gaia IDs to readable labels.

158 STAR_NAME_LOOKUP_PATH = Path("gaia_to_names.csv") # Gaia ->HIP

mapping source

159 STAR_GAIA_HIP_PATH = Path("2025 -12 -05 -15 -20 -27 -425171. csv") #

default Gaia ->HIP crossmatch
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160 # BSC TSV is only used as a positional fallback when the lookup is

missing.

161 STAR_BSC_PATH = Path("bright_star_catalog.tsv") #

default Bright Star Catalog

162 STAR_IAU_PATH = Path("IAU -Catalog␣of␣Star␣Names␣(always␣up␣to␣date)

.csv") # optional IAU names

163 STAR_HIP_TO_HD_PATH: Optional[Path] = None # set

if you have a HIP ->HD mapping CSV

164 STAR_GAIA_POS_PATH = Path("gaia_bright_stars.csv") #

optional Gaia positions to help name matching

165

166

167 def _rotate_image_keep_size(image: np.ndarray , angle_deg: float) ->

np.ndarray:

168 """ Rotate around image center while preserving dimensions."""

169 if abs(angle_deg) < 1e-6:

170 return image

171 h, w = image.shape [:2]

172 M = cv2.getRotationMatrix2D ((w / 2.0, h / 2.0), angle_deg , 1.0)

173 return cv2.warpAffine(

174 image ,

175 M,

176 (w, h),

177 flags=cv2.INTER_LINEAR ,

178 borderMode=cv2.BORDER_CONSTANT ,

179 borderValue =0,

180 )

181

182 def _hms_to_deg(hms: str) -> float:

183 """ Convert ’HH:MM:SS.SSS’ or compact ’HHMMSS.S’ to RA in

degrees."""

184 hms = hms.strip()

185 if ":" in hms:

186 h, m, s = hms.split(":")
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187 h = float(h); m = float(m); s = float(s)

188 else:

189 # compact notation ’HHMMSS.S’

190 if len(hms) < 6:

191 raise ValueError(f"RA␣string␣too␣short:␣{hms!r}")

192 h = float(hms [0:2])

193 m = float(hms [2:4])

194 s = float(hms [4:])

195 return 15.0 * (h + m/60.0 + s/3600.0)

196

197

198 def _dms_to_deg(dms: str) -> float:

199 """ Convert ’+DD:MM:SS.SS’ or ’+DDMMSS ’ style strings to Dec in

degrees."""

200 dms = dms.strip()

201 if ":" in dms:

202 sign = -1.0 if dms.startswith("-") else 1.0

203 body = dms.lstrip("+-")

204 d, m, s = body.split(":")

205 d = float(d); m = float(m); s = float(s)

206 else:

207 sign = -1.0 if dms [0] == "-" else 1.0

208 body = dms.lstrip("+-")

209 if len(body) < 4:

210 raise ValueError(f"Dec␣string␣too␣short:␣{dms!r}")

211 d = float(body [0:2])

212 m = float(body [2:4])

213 s = float(body [4:]) if len(body) > 4 else 0.0

214 return sign * (d + m/60.0 + s/3600.0)

215

216

217 def _to_uint8_debug(img: np.ndarray) -> np.ndarray:

218 """ Scale various arrays to uint8 for debug dumps."""

219 if img.dtype == np.uint8:
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220 return img

221 if img.dtype == np.bool_:

222 return (img.astype(np.uint8) * 255)

223 if np.issubdtype(img.dtype , np.integer):

224 max_val = np.iinfo(img.dtype).max

225 return np.clip(img.astype(np.float32) * (255.0 / max_val),

0, 255).astype(np.uint8)

226 lo = float(np.percentile(img , 1.0))

227 hi = float(np.percentile(img , 99.0))

228 if hi <= lo:

229 hi = lo + 1e-6

230 norm = np.clip((img - lo) / (hi - lo), 0.0, 1.0)

231 return np.clip(norm * 255.0 , 0, 255).astype(np.uint8)

232

233

234 def _make_viz_binary(img_u8: np.ndarray) -> np.ndarray:

235 """ Create a more visible binary for sparse masks (dilate and

invert)."""

236 if img_u8.dtype != np.uint8:

237 img_u8 = _to_uint8_debug(img_u8)

238 if img_u8.max() == 0:

239 return img_u8

240 # If mostly 0/255 , dilate to make sparse points visible and

invert for contrast.

241 unique_vals = np.unique(img_u8)

242 if unique_vals.size <= 3:

243 k = np.ones((3, 3), np.uint8)

244 dil = cv2.dilate(img_u8 , k, iterations =1)

245 inv = 255 - dil

246 return inv

247 return img_u8

248

249
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250 def _make_overlay(mask_u8: np.ndarray , base_gray_u8: np.ndarray) ->

np.ndarray:

251 """ Overlay binary mask as red contours on the grayscale base

image."""

252 if mask_u8.dtype != np.uint8:

253 mask_u8 = _to_uint8_debug(mask_u8)

254 if base_gray_u8.dtype != np.uint8:

255 base_gray_u8 = _to_uint8_debug(base_gray_u8)

256 color = cv2.cvtColor(base_gray_u8 , cv2.COLOR_GRAY2BGR)

257 if mask_u8.max() == 0:

258 return color

259 contours , _ = cv2.findContours(mask_u8 , cv2.RETR_EXTERNAL , cv2.

CHAIN_APPROX_SIMPLE)

260 cv2.drawContours(color , contours , -1, (0, 0, 255), 1)

261 return color

262

263

264 def _quadrilateral_mask_from_image(img_gray: np.ndarray ,

265 thresh_percentile: float = 0.5,

266 close_kernel: int = 9,

267 erode_px: int = 2) -> np.ndarray

:

268 """ Build a convex/quad mask from the truly non -zero region of

the image."""

269 positive = img_gray[img_gray > 0]

270 if positive.size == 0:

271 return np.zeros_like(img_gray , dtype=np.uint8)

272 thr_val = float(np.percentile(positive , thresh_percentile))

273 thr_val = max(1.0, thr_val)

274 mask = (img_gray > thr_val).astype(np.uint8)

275 if close_kernel and close_kernel > 1:

276 k = close_kernel if close_kernel % 2 == 1 else close_kernel

+ 1

277 kernel = np.ones((k, k), np.uint8)
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278 mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE , kernel ,

iterations =1)

279 if erode_px and erode_px > 0:

280 k = max(1, int(erode_px))

281 kernel = np.ones((k, k), np.uint8)

282 mask = cv2.erode(mask , kernel , iterations =1)

283

284 # Convex hull of non -zero pixels

285 ys , xs = np.nonzero(mask)

286 if ys.size == 0:

287 return np.zeros_like(mask , dtype=np.uint8)

288 pts = np.column_stack ((xs, ys)).astype(np.int32)

289 hull = cv2.convexHull(pts)

290

291 # Try to approximate to 4 points if possible

292 approx = cv2.approxPolyDP(hull , 0.01 * cv2.arcLength(hull , True

), True)

293 poly = approx if len(approx) >= 3 else hull

294 quad_mask = np.zeros_like(mask , dtype=np.uint8)

295 cv2.fillPoly(quad_mask , [poly], 1)

296 return quad_mask

297

298

299 def _write_debug_images(prefix: str , images: Dict[str , np.ndarray],

out_dir: Optional[Path] = None) -> None:

300 """ Write intermediate debug images (uint8 scaled) to

STAR_DEBUG_DIR or a custom subfolder."""

301 if not images:

302 return

303 out_dir = out_dir or STAR_DEBUG_DIR

304 out_dir.mkdir(parents=True , exist_ok=True)

305 base_gray = images.get("step_input_gray")

306 base_gray_u8 = _to_uint8_debug(base_gray) if base_gray is not

None else None
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307 for name , arr in images.items ():

308 try:

309 out = _to_uint8_debug(arr)

310 except Exception:

311 continue

312 cv2.imwrite(str(out_dir / f"{prefix}_{name}.png"), out)

313 # Also write a visibility -enhanced version for sparse

binaries

314 viz = _make_viz_binary(out)

315 if viz is not out:

316 cv2.imwrite(str(out_dir / f"{prefix}_{name}_viz.png"),

viz)

317 # Overlay on base gray if available and this looks like a

binary/sparse mask

318 if base_gray_u8 is not None and out.max() > 0 and np.unique

(out).size <= 10:

319 overlay = _make_overlay(out , base_gray_u8)

320 cv2.imwrite(str(out_dir / f"{prefix}_{name}_overlay.png

"), overlay)

321

322

323 def _load_precomputed_mask(image_path: Path) -> Optional[np.ndarray

]:

324 """

325 Load a precomputed valid -region mask (odd/even overlap)

matching the image filename.

326 Returns a uint8 mask with 1s where valid , or None if not found

or unreadable.

327 """

328 mask_path = STAR_VALID_MASK_DIR / image_path.name

329 if not mask_path.exists ():

330 return None

331 mask = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE)

332 if mask is None:
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333 return None

334 return (mask > 0).astype(np.uint8)

335

336

337 def _compute_jupiter_mask(

338 img_gray: np.ndarray ,

339 percentile: float = STAR_JUPITER_PERCENTILE ,

340 min_area: int = STAR_JUPITER_MIN_AREA ,

341 min_y_frac: float = STAR_JUPITER_MIN_Y_FRAC ,

342 dilate_px: int = STAR_JUPITER_DILATE ,

343 pad_y: int = STAR_JUPITER_PAD_Y ,

344 pad_x: int = STAR_JUPITER_PAD_X ,

345 ) -> Optional[np.ndarray ]:

346 """

347 Detect bright Jupiter/glare blobs and return a uint8 mask (1 =

glare).

348 - Blur first to merge the limb/halo.

349 - Threshold on a high percentile.

350 - Keep large components low in the image (Jupiter region),

union them , pad and dilate.

351 Returns None if nothing is found.

352 """

353 # Light blur to merge halo structures

354 img_blur = cv2.GaussianBlur(img_gray , (9, 9), 0)

355

356 positive = img_blur[img_blur > 0]

357 if positive.size == 0:

358 return None

359 thr = float(np.percentile(positive , percentile))

360 if thr <= 0:

361 return None

362 bright = (img_blur >= thr).astype(np.uint8)

363 num , labels , stats , centroids = cv2.

connectedComponentsWithStats(bright , connectivity =8)
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364 H, W = img_gray.shape

365 mask = np.zeros_like(img_gray , dtype=np.uint8)

366 if num > 1:

367 for idx in range(1, num):

368 area = stats[idx , cv2.CC_STAT_AREA]

369 if area < min_area:

370 continue

371 if area <= STAR_JUPITER_EXCLUDE_STAR_MAX_AREA:

372 continue # likely a star or small blob

373 y_c = centroids[idx ][1]

374 if y_c < min_y_frac * H:

375 continue

376 # Use the actual component shape (not just its bounding

box)

377 mask = np.logical_or(mask , labels == idx).astype(np.

uint8)

378

379 # Fallback: if no blob matched , optionally try a row -mean band

(disabled if flag set)

380 if mask.max() == 0 and not STAR_DISABLE_JUPITER_FALLBACK:

381 row_mean = img_blur.mean(axis =1)

382 m = row_mean.mean()

383 s = row_mean.std()

384 cutoff = max(m + s, np.percentile(row_mean , 90))

385 rows = np.where(row_mean >= cutoff)[0]

386 if rows.size > 0:

387 y0 = int(rows.min())

388 y1 = int(rows.max())

389 if y1 > H * 0.4: # ensure it’s towards the bottom

390 mask[y0:y1 + 1, :] = 1

391

392 if mask.max() == 0:

393 return None

394
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395 # dilate to catch halo

396 if dilate_px and dilate_px > 1:

397 k = dilate_px if dilate_px % 2 == 1 else dilate_px + 1

398 kernel = np.ones((k, k), np.uint8)

399 mask = cv2.dilate(mask , kernel , iterations =1)

400 return mask

401 def load_yale_bsc_ascii(path: str , max_mag: float = 6.5):

402 """

403 Parse the ASCII ’ybsc5’ (Yale Bright Star Catalog 5) file.

404

405 The parts [6] field looks like:

406 ’000001.1+444022000509.9+451345114.44 -16.88 ’

407 RA1950 Dec1950 RA2000 Dec2000 l b

408

409 Parsed sequentially instead of using hard -coded indices.

410 """

411 catalog = []

412 with open(path , "r", encoding="ascii", errors="ignore") as f:

413 for line in f:

414 line = line.rstrip("\n")

415 if not line.strip():

416 continue

417

418 # Skip headers/comment lines

419 if line.startswith("sbsc5") or "BSC_number" in line or

"BSC_num" in line:

420 continue

421 if not line.strip()[0]. isdigit ():

422 continue

423

424 parts = line.split()

425 if len(parts) < 8:

426 continue

427
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428 # Catalog number

429 try:

430 num = int(parts [0])

431 except ValueError:

432 continue

433

434 ra_block = parts [6]

435 mag_str = parts [7]

436

437 # Minimum length check

438 if len(ra_block) < 30:

439 continue

440

441 # Sequential parsing

442 i = 0

443 ra1950_str = ra_block[i:i+7]; i += 7 #

’000001.1 ’

444 dec1950_str = ra_block[i:i+7]; i += 7 #

’+444022’

445 ra2000_str = ra_block[i:i+7]; i += 7 #

’000509.9 ’

446 dec2000_str = ra_block[i:i+7]; i += 7 #

’+451345’

447 # Ignore remaining galactic l,b fields

448

449 # Magnitude

450 try:

451 mag = float(mag_str)

452 except ValueError:

453 continue

454 if mag > max_mag:

455 continue

456

457 # Convert RA/Dec to degrees
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458 try:

459 ra_deg = _hms_to_deg(ra2000_str)

460 dec_deg = _dms_to_deg(dec2000_str)

461 except ValueError:

462 # Skip malformed record

463 continue

464

465 vec = _radec_to_vec(ra_deg , dec_deg)

466

467 name = f"BSC{num :04d}"

468 catalog.append(

469 CatalogStar(

470 name=name ,

471 ra_deg=ra_deg ,

472 dec_deg=dec_deg ,

473 mag=mag ,

474 vec_inertial=vec ,

475 )

476 )

477

478 if not catalog:

479 raise RuntimeError("No␣stars␣parsed␣from␣ybsc5;␣the␣format␣

may␣be␣unexpected.")

480 catalog.sort(key=lambda c: c.mag)

481 print(f"Loaded␣{len(catalog)}␣stars␣from␣{path}")

482 return catalog

483

484 def load_gaia_csv(path: str , max_mag: float = 6.5) -> List[

CatalogStar ]:

485 """

486 Read Gaia/Hipparcos CSV and tolerate mixed -case column names.

487 """

488 catalog: List[CatalogStar] = []

489 with open(path , "r", encoding="utf -8", newline="") as f:
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490 reader = csv.DictReader(f)

491

492 # Force lowercase headers (ra, dec , mag) for robustness

493 if reader.fieldnames:

494 reader.fieldnames = [name.lower() for name in reader.

fieldnames]

495

496 for row in reader:

497 try:

498 ra_deg = float(row["ra"])

499 dec_deg = float(row["dec"])

500 mag = float(row["mag"])

501 except (KeyError , ValueError):

502 continue

503

504 if mag > max_mag:

505 continue

506

507 name = row.get("source_id", "Unknown")

508 vec = _radec_to_vec(ra_deg , dec_deg)

509

510 catalog.append(

511 CatalogStar(

512 name=str(name),

513 ra_deg=ra_deg ,

514 dec_deg=dec_deg ,

515 mag=mag ,

516 vec_inertial=vec ,

517 )

518 )

519

520 if not catalog:

521 raise RuntimeError("No␣stars␣parsed.␣Check␣the␣CSV␣file.")

522
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523 catalog.sort(key=lambda c: c.mag)

524 print(f"Loaded␣{len(catalog)}␣stars␣from␣{path}")

525 return catalog

526

527

528 def _parse_hip_from_name(name: str) -> Optional[int]:

529 """ Extract HIP number from strings like ’HIP32349 ’."""

530 m = re.match(r"hip\s*(\d+)", name.strip(), flags=re.IGNORECASE)

531 if not m:

532 return None

533 try:

534 return int(m.group (1))

535 except ValueError:

536 return None

537

538

539 def _parse_gaia_from_name(name: str) -> Optional[int]:

540 """ Extract Gaia source_id if the name is a pure digit string.

"""

541 s = name.strip ()

542 if not s.isdigit ():

543 return None

544 try:

545 return int(s)

546 except ValueError:

547 return None

548

549

550 def load_gaia_to_hip_map(path: Path) -> Dict[int , int]:

551 """ Load Gaia ->HIP mapping from gaia_to_names.csv (HIP column).

"""

552 if not path.exists ():

553 print(f"INFO:␣Gaia ->HIP␣lookup␣file␣not␣found␣at␣{path},␣

skipping␣mapping.")
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554 return {}

555 gaia_to_hip: Dict[int , int] = {}

556 with open(path , "r", encoding="utf -8", newline="") as f:

557 reader = csv.DictReader(f)

558 for row in reader:

559 hip_raw = row.get("HIP") or row.get("hip")

560 gaia_raw = row.get("gaia_id") or row.get("GAIA_ID") or

row.get("gaia")

561 if not gaia_raw or not hip_raw:

562 continue

563 try:

564 gaia_val = int(float(gaia_raw))

565 hip_val = int(float(hip_raw))

566 except ValueError:

567 continue

568 gaia_to_hip[gaia_val] = hip_val

569 print(f"Loaded␣{len(gaia_to_hip)}␣Gaia ->HIP␣mappings␣from␣{path

}")

570 return gaia_to_hip

571

572

573

574 def load_iau_names(path: Path) -> Dict[int , str]:

575 """

576 Load HIP ->IAU proper name map from the IAU catalog CSV if

available.

577 Prefer the Simbad spelling column when present.

578 """

579 if not path.exists ():

580 return {}

581 hip_names: Dict[int , str] = {}

582 with open(path , "r", encoding="utf -8", newline="") as f:

583 reader = csv.DictReader(filter(lambda ln: ln.strip(), f))

584 for row in reader:
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585 # Strip simple HTML span wrappers and normalize keys

586 cleaned = {}

587 for k, v in row.items ():

588 if k is None:

589 continue

590 key = re.sub(r" <[^>]+>", "", k).strip()

591 cleaned[key.lower()] = v

592

593 hip_raw = (

594 cleaned.get("hip")

595 or cleaned.get("hip␣id")

596 or row.get("HIP")

597 or row.get("hip")

598 or row.get("Hip")

599 )

600 if not hip_raw:

601 continue

602

603 name = (

604 cleaned.get("simbad␣spelling")

605 or cleaned.get("proper␣names")

606 or row.get("Name")

607 or row.get("name")

608 )

609 if not name:

610 continue

611

612 try:

613 hip_val = int(float(hip_raw))

614 except ValueError:

615 continue

616 hip_names[hip_val] = name.strip ()

617 print(f"Loaded␣{len(hip_names)}␣IAU␣HIP␣names␣from␣{path}")

618 return hip_names
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619

620

621 def _parse_radec_from_bsc(row: Dict[str , str]) -> Optional[Tuple[

float , float ]]:

622 ra = row.get("RAJ2000", "")

623 dec = row.get("DEJ2000", "")

624 try:

625 h, m, s = [float(x) for x in ra.replace(":", "␣").split ()]

626 ra_deg = 15.0 * (h + m / 60.0 + s / 3600.0)

627 sign = -1.0 if dec.strip ().startswith("-") else 1.0

628 d, dm, ds = [float(x) for x in dec.replace(":", "␣").split

()]

629 dec_deg = sign * (abs(d) + dm / 60.0 + ds / 3600.0)

630 return ra_deg , dec_deg

631 except Exception:

632 return None

633

634

635 def load_bsc_for_positions(path: Path) -> Optional[List[Tuple[float

, float , str ]]]:

636 """

637 Light -weight BSC loader for positional fallback: returns list

of (ra_deg , dec_deg , name).

638 """

639 if not path.exists ():

640 return None

641 rows = []

642 with open(path , "r", encoding="utf -8", newline="") as f:

643 reader = csv.DictReader(filter(lambda ln: not ln.startswith

("#") and ln.strip(), f), delimiter="|")

644 for row in reader:

645 name = (row.get("Name") or "").strip()

646 if not name:

647 continue
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648 radec = _parse_radec_from_bsc(row)

649 if radec is None:

650 continue

651 ra_deg , dec_deg = radec

652 rows.append ((ra_deg , dec_deg , name))

653 print(f"Loaded␣{len(rows)}␣BSC␣entries␣with␣positions␣for␣

fallback␣naming")

654 return rows

655

656

657 def apply_name_lookup(

658 catalog: List[CatalogStar],

659 gaia_to_hip_map: Optional[Dict[int , int]] = None ,

660 iau_name_map: Optional[Dict[int , str]] = None ,

661 ) -> None:

662 """

663 Replace catalog names with IAU proper names when possible;

otherwise keep/format Gaia IDs.

664 1) If the catalog name is a Gaia id and gaia_to_hip_map has a

mapping , treat it as HIP for IAU lookup.

665 2) For HIP ids: prefer IAU proper names.

666 3) If no IAU name was assigned and we have a Gaia id , label

as ’Gaia #### ’.

667 4) Otherwise leave the existing name (e.g., HIP ####).

668 """

669 gaia_to_hip_map = gaia_to_hip_map or {}

670 replaced = 0

671 for star in catalog:

672 hip_val = _parse_hip_from_name(star.name)

673 gaia_val = _parse_gaia_from_name(star.name)

674

675 if gaia_val is not None and gaia_val in gaia_to_hip_map:

676 hip_val = gaia_to_hip_map[gaia_val]

677
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678 assigned = False

679 if hip_val is not None and iau_name_map:

680 new_name = iau_name_map.get(hip_val)

681 if new_name:

682 if new_name != star.name:

683 replaced += 1

684 star.name = new_name

685 assigned = True

686

687 if not assigned and gaia_val is not None:

688 label = f"Gaia{gaia_val}"

689 if label != star.name:

690 replaced += 1

691 star.name = label

692 print(f"Applied␣name␣lookup␣to␣{replaced}␣catalog␣entries")

693

694

695 # ------------------------------

696 # Star detection

697 # ------------------------------

698 def detect_stars(image_gray: np.ndarray , options: ProcessingOptions

, mask: Optional[np.ndarray] = None ,

699 debug_images: Optional[Dict[str , np.ndarray ]] =

None) -> List[DetectedStar ]:

700 """

701 Hybrid detector:

702 combines saturated -blob detection for very bright stars with

703 background -subtracted detection for faint stars.

704 """

705 if image_gray.ndim != 2:

706 raise ValueError("detect_stars␣expects␣a␣single -channel␣(

grayscale)␣image.")

707

708 mask_bool = None
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709 if mask is not None:

710 if mask.shape != image_gray.shape:

711 raise ValueError("Mask␣shape␣must␣match␣image.")

712 mask_bool = mask.astype(bool)

713 if debug_images is not None:

714 debug_images["step_mask"] = mask_bool.astype(np.uint8)

* 255

715 if debug_images is not None:

716 debug_images["step_input_gray"] = image_gray.copy()

717

718 # ---------------------------------------------------------

719 # Path 1: saturated stars on the raw image (e.g., Antares)

720 # Anything above the saturation threshold in the original image

counts as a star;

721 # skip background subtraction to preserve bright cores.

722 # ---------------------------------------------------------

723 sat_thresh = int(np.clip(options.saturated_threshold , 0, 255))

724 _, binary_saturated = cv2.threshold(image_gray , sat_thresh ,

255, cv2.THRESH_BINARY)

725 if mask_bool is not None:

726 binary_saturated = cv2.bitwise_and(binary_saturated ,

mask_bool.astype(np.uint8))

727

728 # ---------------------------------------------------------

729 # Path 2: faint -star detection using background subtraction

730 # ---------------------------------------------------------

731 work = image_gray.astype(np.float32)

732 if mask_bool is not None:

733 work = np.where(mask_bool , work , 0.0)

734 if debug_images is not None:

735 debug_images["step_masked_gray"] = work.copy()

736

737 # Force background subtraction for the faint path unless

explicitly disabled
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738 if options.background_subtraction:

739 # Ensure the kernel is large enough (minimum 51) and odd

740 k = max(options.background_kernel , 51)

741 if k % 2 == 0:

742 k += 1

743

744 bg = cv2.medianBlur(image_gray , k)

745 work = work - bg.astype(np.float32)

746 if debug_images is not None:

747 debug_images["step_background"] = bg

748 debug_images["step_after_bg_sub"] = work.copy()

749

750 if options.normalize:

751 work -= work.min()

752 max_val = work.max()

753 if max_val > 0:

754 work /= max_val

755 if debug_images is not None:

756 debug_images["step_after_norm"] = work.copy()

757

758 # Threshold selection for faint detections

759 mean , std = cv2.meanStdDev(work)

760 mean_val = float(mean [0][0])

761 std_val = float(std [0][0])

762 thresh_val = mean_val + options.threshold_multiplier * std_val

763 if debug_images is not None:

764 debug_images["step_stats_mean_std"] = np.array ([[ mean_val ,

std_val]], dtype=np.float32)

765

766 if options.normalize:

767 _, binary_faint = cv2.threshold(work , thresh_val , 255, cv2.

THRESH_BINARY)

768 else:
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769 _, binary_faint = cv2.threshold(work , thresh_val , 255, cv2.

THRESH_BINARY)

770

771 binary_faint = binary_faint.astype(np.uint8)

772 if mask_bool is not None:

773 binary_faint = cv2.bitwise_and(binary_faint , mask_bool.

astype(np.uint8))

774 if debug_images is not None:

775 debug_images["step_binary_faint"] = binary_faint.copy()

776

777 # ---------------------------------------------------------

778 # Step 3: merge saturated + faint detections (bitwise OR)

779 # ---------------------------------------------------------

780 final_binary = cv2.bitwise_or(binary_saturated , binary_faint)

781 if mask_bool is not None:

782 final_binary = cv2.bitwise_and(final_binary , mask_bool.

astype(np.uint8))

783 if debug_images is not None:

784 debug_images["step_binary_saturated"] = binary_saturated.

copy()

785 debug_images["step_binary_final"] = final_binary.copy()

786

787 # Clean up small noise

788 if options.morph_open:

789 kernel_size = max(1, options.morph_kernel)

790 kernel = np.ones(( kernel_size , kernel_size), np.uint8)

791 iterations = max(1, options.morph_iterations)

792 final_binary = cv2.morphologyEx(final_binary , cv2.

MORPH_OPEN , kernel , iterations=iterations)

793 if debug_images is not None:

794 debug_images["step_binary_final_open"] = final_binary.

copy()

795

796 # ---------------------------------------------------------
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797 # Step 4: analyze blobs

798 # ---------------------------------------------------------

799 num_labels , labels , stats , centroids = cv2.

connectedComponentsWithStats(final_binary)

800

801 H, W = image_gray.shape

802 detections: List[DetectedStar] = []

803

804 # Safety: if max_area is unset , allow very large blobs for

bright stars

805 safe_max_area = options.max_area if options.max_area is not

None else 100000

806

807 for label in range(1, num_labels):

808 x, y, w, h, area = stats[label]

809

810 if options.min_area is not None and area < options.min_area

:

811 continue

812

813 cx , cy = centroids[label]

814

815 # Measure flux on the original image (not the background -

subtracted one)

816 r = int(math.sqrt(area)/2) + 2

817 r = min(r, 40) # cap radius

818

819 x0 = max(int(cx) - r, 0)

820 x1 = min(int(cx) + r + 1, W)

821 y0 = max(int(cy) - r, 0)

822 y1 = min(int(cy) + r + 1, H)

823

824 patch = image_gray[y0:y1 , x0:x1]

825 if patch.size == 0:
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826 continue

827

828 patch_max = int(patch.max()) if patch.size else 0

829 is_saturated_blob = patch_max >= sat_thresh

830 if area > safe_max_area and not (options.

allow_oversized_saturated and is_saturated_blob):

831 continue

832

833 # Weighted centroid

834 weights = patch.astype(float)

835 s = weights.sum()

836

837 if s <= 0:

838 det = DetectedStar(x=cx, y=cy, flux=float(area))

839 else:

840 yy , xx = np.mgrid[y0:y1 , x0:x1]

841 cx_refined = (xx * weights).sum() / s

842 cy_refined = (yy * weights).sum() / s

843 det = DetectedStar(x=cx_refined , y=cy_refined , flux=s)

844

845 detections.append(det)

846

847 detections.sort(key=lambda d: d.flux , reverse=True)

848 if options.max_stars and len(detections) > options.max_stars:

849 detections = detections [: options.max_stars]

850

851 print(f"DEBUG:␣Found␣{len(detections)}␣stars.␣Brightest␣flux:␣{

detections [0]. flux␣if␣detections␣else␣0}")

852

853 return detections

854 # ------------------------------

855 # Processing presets / toggles

856 # ------------------------------

857
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858 def processing_preset(mode: str) -> ProcessingOptions:

859 """ Set default options for simulation (low noise) versus real

data."""

860 mode = (mode or "real").lower()

861 if mode == "simulation":

862 return ProcessingOptions(

863 background_subtraction=False ,

864 background_kernel =31,

865 normalize=True ,

866 threshold_multiplier =4.0,

867 morph_open=False ,

868 min_area=1,

869 max_area =800,

870 max_stars =150,

871 )

872 # default: noisier real data

873 return ProcessingOptions ()

874

875

876 # ------------------------------

877 # Pixels -> unit vectors

878 # ------------------------------

879 def pixels_to_unit_vectors(detections: List[DetectedStar],

880 image_shape: Tuple[int , int],

881 hardware_params: Optional[Dict[str ,

float]] = None) -> None:

882 """

883 Convert pixel detections into unit vectors using the Juno

camera parameters ,

884 correcting for any resizing applied to the screenshot.

885 hardware_params can override res_x/res_y/cx/cy/efl/pixel pitch.

886 """

887 H_img , W_img = image_shape

888
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889 params = dict(JUNO_HARDWARE_PARAMS)

890 if hardware_params:

891 params.update(hardware_params)

892

893 # 1. Compute scale factor between screenshot and physical

sensor

894 # Assume the aspect ratio is roughly preserved.

895 scale_x = W_img / params["res_x"]

896 scale_y = H_img / params["res_y"]

897

898 # Warn if aspect ratio is strongly distorted (stretched

screenshot)

899 if abs(scale_x - scale_y) > 0.05:

900 print(f"WARNING:␣Aspect␣ratio␣looks␣off!␣X-scale={ scale_x

:.2f},␣Y-scale ={ scale_y :.2f}")

901

902 # 2. Compute hardware fx/fy

903 fx_hard = params["efl_um"] / params["pixel_x_um"] # ~2326 px

904 fy_hard = params["efl_um"] / params["pixel_y_um"] # ~2410 px

905

906 # 3. Scale to the screenshot dimensions

907 fx = fx_hard * scale_x

908 fy = fy_hard * scale_y

909 cx = params["cx_hardware"] * scale_x

910 cy = params["cy_hardware"] * scale_y

911 kappa = params["kappa"] # Distortion coefficient

912

913 print(f"DEBUG:␣Juno␣hardware␣scale␣correction:␣{scale_x :.3f}x")

914 print(f"␣␣␣␣␣␣␣Using␣fx={fx:.1f}␣(was␣{fx_hard :.1f}),␣cx={cx:.1

f}␣(was␣{params[’cx_hardware ’]})")

915

916 for det in detections:

917 # Pinhole model (with center correction and non -square

pixels)

Page 120 of 140



APPENDIX A. ADDITIONAL MATERIAL 121

918 # Image: x right , y down. Camera frame: y often up , z

forward.

919

920 # Step A: center and normalize with focal length

921 x_norm = (det.x - cx) / fx

922 y_norm = -(det.y - cy) / fy # invert Y to map image to

camera frame

923 if STAR_MIRROR_X_IN_RAYS:

924 x_norm *= -1.0 # mirror camera -x so geometry matches

without flipping the image

925

926 # Step B: distortion correction (inverse approximation for

small kappa)

927 r2 = x_norm **2 + y_norm **2

928 if kappa != 0.0:

929 factor = 1.0 - kappa * r2

930 x_norm *= factor

931 y_norm *= factor

932

933 z = 1.0

934 v = np.array ([x_norm , y_norm , z], dtype=np.float64)

935 v /= np.linalg.norm(v)

936

937 det.ray_cam = v

938 # ------------------------------

939 # Catalog pair table

940 # ------------------------------

941

942 def build_catalog_pair_table(catalog: List[CatalogStar],

943 max_pairs: int = 5000,

944 angle_bin_deg: float = 0.01):

945 """

946 Compute pairwise angles between the brightest catalog stars.

947
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948 Returns:

949 bins: dict bin_index -> list of (idx1 , idx2 , angle_rad)

950 angle_bin_rad: bin size in radians

951 """

952 # choose N such that N(N-1)/2 ~ max_pairs

953 N = min(len(catalog), int (0.5 * (1 + math.sqrt(1 + 8 *

max_pairs))))

954 N = max(3, N)

955 angle_bin_rad = math.radians(angle_bin_deg)

956 bins: Dict[int , List[Tuple[int , int , float ]]] = {}

957 for i in range(N - 1):

958 vi = catalog[i]. vec_inertial

959 for j in range(i + 1, N):

960 vj = catalog[j]. vec_inertial

961 cosang = float(np.clip(np.dot(vi , vj), -1.0, 1.0))

962 ang = math.acos(cosang)

963 b = int(ang / angle_bin_rad)

964 bins.setdefault(b, []).append ((i, j, ang))

965 return bins , angle_bin_rad

966

967

968 # ------------------------------

969 # TRIAD: snelle attitude uit 2 vectorparen

970 # ------------------------------

971

972 def triad_attitude(v_cam: np.ndarray , w_cam: np.ndarray ,

973 v_inertial: np.ndarray , w_inertial: np.ndarray)

-> np.ndarray:

974 """ TRIAD: return R (3x3) mapping camera -> inertial frame."""

975 # Camera triad

976 v1 = v_cam / np.linalg.norm(v_cam)

977 w1 = w_cam / np.linalg.norm(w_cam)

978 t1_cam = v1

979 t2_cam = np.cross(v1, w1)
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980 n2 = np.linalg.norm(t2_cam)

981 if n2 < 1e-6:

982 raise ValueError("TRIAD:␣camera␣vectors␣are␣nearly␣colinear

.")

983 t2_cam /= n2

984 t3_cam = np.cross(t1_cam , t2_cam)

985 C_cam = np.column_stack ((t1_cam , t2_cam , t3_cam))

986

987 # Inertial triad

988 v2 = v_inertial / np.linalg.norm(v_inertial)

989 w2 = w_inertial / np.linalg.norm(w_inertial)

990 t1_in = v2

991 t2_in = np.cross(v2 , w2)

992 n2 = np.linalg.norm(t2_in)

993 if n2 < 1e-6:

994 raise ValueError("TRIAD:␣inertial␣vectors␣are␣nearly␣

colinear.")

995 t2_in /= n2

996 t3_in = np.cross(t1_in , t2_in)

997 C_in = np.column_stack ((t1_in , t2_in , t3_in))

998

999 # R: camera -> inertiaal

1000 R = C_in @ C_cam.T

1001 return R

1002

1003

1004 # ------------------------------

1005 # Wahba via Davenport Q

1006 # ------------------------------

1007

1008 def wahba_davenport_q(camera_vecs: np.ndarray ,

1009 inertial_vecs: np.ndarray ,

1010 weights: Optional[np.ndarray] = None) -> np.

ndarray:
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1011 """

1012 Solve Wahba ’s problem using Davenport ’s Q method.

1013

1014 camera_vecs: (N,3)

1015 inertial_vecs: (N,3)

1016 """

1017 if weights is None:

1018 weights = np.ones(camera_vecs.shape[0], dtype=np.float64)

1019 W = np.diag(weights)

1020 B = camera_vecs.T @ W @ inertial_vecs

1021 S = B + B.T

1022 sigma = np.trace(B)

1023 Z = np.array ([

1024 B[1, 2] - B[2, 1],

1025 B[2, 0] - B[0, 2],

1026 B[0, 1] - B[1, 0],

1027 ], dtype=np.float64)

1028

1029 K = np.zeros ((4, 4), dtype=np.float64)

1030 K[:3, :3] = S - sigma * np.eye(3)

1031 K[:3, 3] = Z

1032 K[3, :3] = Z

1033 K[3, 3] = sigma

1034

1035 eigvals , eigvecs = np.linalg.eigh(K)

1036 q = eigvecs[:, np.argmax(eigvals)] # largest eigenvalue

1037 q_vec = q[:3]

1038 q0 = q[3]

1039

1040 # Normalize quaternion

1041 qx , qy , qz = q_vec

1042 norm_q = math.sqrt(q0*q0 + qx*qx + qy*qy + qz*qz)

1043 if norm_q == 0:

1044 raise RuntimeError("Zero␣quaternion␣in␣Wahba␣solution.")
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1045 q0 /= norm_q

1046 qx /= norm_q

1047 qy /= norm_q

1048 qz /= norm_q

1049

1050 # Quaternion -> rotatiematrix

1051 R = np.array ([

1052 [1 - 2*(qy**2 + qz**2), 2*(qx*qy - qz*q0), 2*(

qx*qz + qy*q0)],

1053 [2*(qx*qy + qz*q0), 1 - 2*(qx**2 + qz**2), 2*(

qy*qz - qx*q0)],

1054 [2*(qx*qz - qy*q0), 2*(qy*qz + qx*q0), 1 -

2*(qx**2 + qy**2)],

1055 ], dtype=np.float64)

1056

1057 return R

1058

1059

1060 # ------------------------------

1061 # RANSAC + pair -matching attitude

1062 # ------------------------------

1063

1064 def attitude_from_star_pairs_ransac(

1065 detections: List[DetectedStar],

1066 catalog: List[CatalogStar],

1067 pair_table ,

1068 angle_bin_rad: float ,

1069 max_iterations: int = 500,

1070 max_inlier_err_deg: float = 0.2,

1071 min_inliers: int = 8,

1072 ):

1073 """

1074 Estimate attitude with RANSAC:

1075 - compare angles between detected star pairs to catalog pairs
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1076 - build hypotheses via TRIAD

1077 - score on inlier count

1078 - refine best solution with Davenport Q

1079 """

1080 bins = pair_table

1081 cam_vecs = np.array ([d.ray_cam for d in detections ])

1082 if cam_vecs.shape [0] < 2:

1083 raise RuntimeError("Need␣at␣least␣2␣detections␣for␣attitude

.")

1084

1085 cat_vecs = np.array ([c.vec_inertial for c in catalog ])

1086 max_inlier_err_rad = math.radians(max_inlier_err_deg)

1087 cos_max_err = math.cos(max_inlier_err_rad)

1088

1089 best_inliers: List[Tuple[int , int]] = []

1090 best_R = None

1091

1092 # Precompute all detection pairs

1093 M = len(detections)

1094 det_pairs = []

1095 for i in range(M - 1):

1096 for j in range(i + 1, M):

1097 vi = cam_vecs[i]

1098 vj = cam_vecs[j]

1099 cosang = float(np.clip(np.dot(vi , vj), -1.0, 1.0))

1100 ang = math.acos(cosang)

1101 det_pairs.append ((i, j, ang))

1102

1103 if not det_pairs:

1104 raise RuntimeError("No␣detection␣pairs␣found.")

1105

1106 import random

1107 for _ in range(max_iterations):

1108 # Pick a random detection pair
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1109 i_det , j_det , ang_det = random.choice(det_pairs)

1110 bin_idx = int(ang_det / angle_bin_rad)

1111 candidate_pairs = []

1112 for b in (bin_idx - 1, bin_idx , bin_idx + 1):

1113 if b in bins:

1114 candidate_pairs.extend(bins[b])

1115 if not candidate_pairs:

1116 continue

1117 i_cat , j_cat , _ = random.choice(candidate_pairs)

1118

1119 # Try both mappings (i->i_cat , j->j_cat) and swapped

1120 for mapping in [((i_det , i_cat), (j_det , j_cat)),

1121 ((i_det , j_cat), (j_det , i_cat))]:

1122 (i1 , c1), (i2, c2) = mapping

1123 v_cam1 = cam_vecs[i1]

1124 v_cam2 = cam_vecs[i2]

1125 v_cat1 = cat_vecs[c1]

1126 v_cat2 = cat_vecs[c2]

1127 try:

1128 R = triad_attitude(v_cam1 , v_cam2 , v_cat1 , v_cat2)

1129 except ValueError:

1130 continue

1131

1132 # Score hypothesis

1133 inliers: List[Tuple[int , int]] = []

1134 for k, v_cam in enumerate(cam_vecs):

1135 v_in = R @ v_cam

1136 dots = cat_vecs @ v_in

1137 idx = int(np.argmax(dots))

1138 if dots[idx] >= cos_max_err:

1139 inliers.append ((k, idx))

1140

1141 if len(inliers) > len(best_inliers):

1142 best_inliers = inliers
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1143 best_R = R

1144

1145 if best_R is None or len(best_inliers) < min_inliers:

1146 raise RuntimeError("RANSAC␣could␣not␣find␣a␣consistent␣

attitude.")

1147

1148 # Refine with Wahba on all inliers

1149 cam_list = np.array ([ detections[i]. ray_cam for (i, _) in

best_inliers ])

1150 in_list = np.array([ catalog[j]. vec_inertial for (_, j) in

best_inliers ])

1151 R_refined = wahba_davenport_q(cam_list , in_list)

1152

1153 return R_refined , best_inliers

1154

1155

1156 def debug_residuals(R: np.ndarray ,

1157 detections: List[DetectedStar],

1158 catalog: List[CatalogStar],

1159 inliers: List[Tuple[int , int]]) -> None:

1160 """ Print median/max angular residuals in degrees for matched

stars."""

1161 import numpy as np # local to keep global imports light

1162 errs = []

1163 for det_idx , cat_idx in inliers:

1164 v_cam = detections[det_idx ]. ray_cam

1165 v_cat = catalog[cat_idx ]. vec_inertial

1166 v_pred = R @ v_cam

1167 cosang = float(np.clip(np.dot(v_pred , v_cat), -1.0, 1.0))

1168 err = math.degrees(math.acos(cosang))

1169 errs.append(err)

1170 if not errs:

1171 print("Residuals:␣none␣(no␣inliers).")

1172 return
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1173 print(f"Residuals:␣median ={np.median(errs):.3f}␣deg ,␣max={max(

errs):.3f}␣deg ,␣N={len(errs)}")

1174

1175

1176 def match_all_detections(R: np.ndarray ,

1177 detections: List[DetectedStar],

1178 catalog: List[CatalogStar],

1179 max_err_deg: float = 0.3) -> List[Tuple[

int , int]]:

1180 """ Match remaining detections to nearest catalog star within

angular threshold."""

1181 import numpy as np

1182 if not detections:

1183 return []

1184 cat_vecs = np.array ([c.vec_inertial for c in catalog ])

1185 max_err_rad = math.radians(max_err_deg)

1186 cos_min = math.cos(max_err_rad)

1187

1188 extra_matches = []

1189 for i, det in enumerate(detections):

1190 if det.catalog_idx is not None:

1191 continue

1192 v_cam = det.ray_cam

1193 v_in = R @ v_cam

1194 dots = cat_vecs @ v_in

1195 idx = int(np.argmax(dots))

1196 if dots[idx] >= cos_min:

1197 det.catalog_idx = idx

1198 extra_matches.append ((i, idx))

1199 return extra_matches

1200

1201

1202 # ------------------------------

1203 # Boresight RA/Dec
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1204 # ------------------------------

1205

1206 def rotation_to_boresight_radec(R: np.ndarray) -> Tuple[float ,

float]:

1207 """ Return RA/Dec of the camera z-axis (boresight)."""

1208 boresight_cam = np.array ([0.0, 0.0, 1.0], dtype=np.float64)

1209 v = R @ boresight_cam

1210 x, y, z = v

1211 dec = math.degrees(math.asin(z))

1212 ra = math.degrees(math.atan2(y, x))

1213 if ra < 0:

1214 ra += 360.0

1215 return ra, dec

1216

1217

1218 # ------------------------------

1219 # Image annotation

1220 # ------------------------------

1221

1222 def annotate_image(

1223 image_bgr: np.ndarray ,

1224 detections: List[DetectedStar],

1225 catalog: List[CatalogStar],

1226 matches: List[Tuple[int , int]],

1227 boresight_radec: Tuple[float , float],

1228 ) -> np.ndarray:

1229 """ Draw circles and labels for matched stars."""

1230 out = image_bgr.copy()

1231 for det_idx , cat_idx in matches:

1232 det = detections[det_idx]

1233 star = catalog[cat_idx]

1234 center = (int(round(det.x)), int(round(det.y)))

1235 cv2.circle(out , center , 5, (0, 255, 0), 1, lineType=cv2.

LINE_AA)
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1236 label = star.name

1237 cv2.putText(out ,

1238 label ,

1239 (center [0] + 6, center [1] - 3),

1240 cv2.FONT_HERSHEY_SIMPLEX ,

1241 0.35,

1242 (0, 255, 0),

1243 1,

1244 lineType=cv2.LINE_AA)

1245

1246 ra_deg , dec_deg = boresight_radec

1247 txt = f"Pointing:␣RA={ ra_deg :7.3f}␣deg␣␣Dec={ dec_deg :6.3f}␣deg"

1248 cv2.putText(out ,

1249 txt ,

1250 (20, 30),

1251 cv2.FONT_HERSHEY_SIMPLEX ,

1252 0.6,

1253 (0, 255, 255),

1254 2,

1255 lineType=cv2.LINE_AA)

1256 return out

1257

1258

1259 def annotate_detections_only(

1260 image_bgr: np.ndarray ,

1261 detections: List[DetectedStar],

1262 header: str = "ATTITUDE␣FAILED",

1263 ) -> np.ndarray:

1264 """ Overlay raw detections (no catalog matches) so failures are

inspectable."""

1265 out = image_bgr.copy()

1266 for i, det in enumerate(detections):

1267 center = (int(round(det.x)), int(round(det.y)))
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1268 cv2.circle(out , center , 5, (0, 255, 0), 1, lineType=cv2.

LINE_AA)

1269 cv2.putText(

1270 out ,

1271 f"{i+1}",

1272 (center [0] + 6, center [1] - 3),

1273 cv2.FONT_HERSHEY_SIMPLEX ,

1274 0.35,

1275 (0, 255, 0),

1276 1,

1277 lineType=cv2.LINE_AA ,

1278 )

1279 if header:

1280 cv2.putText(

1281 out ,

1282 header ,

1283 (20, 30),

1284 cv2.FONT_HERSHEY_SIMPLEX ,

1285 0.6,

1286 (0, 0, 255),

1287 2,

1288 lineType=cv2.LINE_AA ,

1289 )

1290 return out

1291

1292

1293 # ------------------------------

1294 # High -level pipeline

1295 # ------------------------------

1296

1297 def run_star_tracker(

1298 image_path: str ,

1299 catalog_path: str ,

1300 max_catalog_mag: float = 8.0,
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1301 output_path: str = "annotated.png",

1302 processing_options: Optional[ProcessingOptions] = None ,

1303 image_config: Optional[ImageInputConfig] = None ,

1304 camera_params_override: Optional[Dict[str , float]] = None ,

1305 denoise_config: Optional[DenoiseConfig] = None ,

1306 detection_mask: Optional[np.ndarray] = None ,

1307 ):

1308 """

1309 Full pipeline: image -> attitude -> annotation.

1310 """

1311 img_stem = Path(image_path).stem

1312 debug_dir = STAR_DEBUG_DIR / img_stem if

STAR_SAVE_DEBUG_INTERMEDIATES else None

1313

1314 # Load image + optional resize/rotate

1315 cfg = image_config or ImageInputConfig(path=image_path)

1316 img_bgr = cv2.imread(cfg.path , cv2.IMREAD_COLOR)

1317 if img_bgr is None:

1318 raise RuntimeError(f"Could␣not␣read␣image␣{cfg.path}")

1319 if STAR_FLIP_CODE is not None:

1320 img_bgr = cv2.flip(img_bgr , STAR_FLIP_CODE)

1321 print(f"DEBUG:␣Input␣image␣flipped␣code={ STAR_FLIP_CODE}")

1322 if cfg.resize_to:

1323 w, h = cfg.resize_to

1324 img_bgr = cv2.resize(img_bgr , (w, h), interpolation=cv2.

INTER_LINEAR)

1325 print(f"DEBUG:␣Input␣image␣resized␣to␣{w}x{h}")

1326 if abs(cfg.rotate_deg) > 1e-6:

1327 img_bgr = _rotate_image_keep_size(img_bgr , cfg.rotate_deg)

1328 print(f"DEBUG:␣Input␣image␣rotated␣{cfg.rotate_deg :.2f}␣deg

␣CCW")

1329 img_gray = cv2.cvtColor(img_bgr , cv2.COLOR_BGR2GRAY)

1330 if denoise_config is not None:

1331 img_gray = clean_image(img_gray , denoise_config)
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1332 if detection_mask is not None:

1333 if detection_mask.shape != img_gray.shape:

1334 raise ValueError("Detection␣mask␣shape␣must␣match␣image

.")

1335 detection_mask = detection_mask.astype(bool)

1336 else:

1337 detection_mask = None

1338

1339 # Catalog (Yale ASCII or Gaia CSV)

1340 if catalog_path.lower ().endswith(".csv"):

1341 catalog = load_gaia_csv(catalog_path , max_mag=

max_catalog_mag)

1342 else:

1343 catalog = load_yale_bsc_ascii(catalog_path , max_mag=

max_catalog_mag)

1344

1345 # Name replacement: prefer IAU names (via HIP), otherwise Gaia

IDs

1346 gaia_to_hip = load_gaia_to_hip_map(STAR_NAME_LOOKUP_PATH) if

STAR_NAME_LOOKUP_PATH.exists () else {}

1347 iau_name_map = load_iau_names(STAR_IAU_PATH)

1348 apply_name_lookup(catalog , gaia_to_hip_map=gaia_to_hip ,

iau_name_map=iau_name_map)

1349

1350 if processing_options is None:

1351 processing_options = ProcessingOptions ()

1352 print(f"Processing␣options:␣{processing_options}")

1353

1354 # Star detection

1355 debug_images = {} if STAR_SAVE_DEBUG_INTERMEDIATES else None

1356 detections = detect_stars(img_gray , options=processing_options ,

mask=detection_mask , debug_images=debug_images)

1357 if debug_images is not None:
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1358 _write_debug_images(f"{img_stem}_detect_main", debug_images

, out_dir=debug_dir)

1359 print(f"Detected␣{len(detections)}␣star␣candidates")

1360

1361 # Retry with more sensitive preset if detections are too few

1362 if len(detections) < STAR_ATTITUDE_MIN_INLIERS:

1363 print(f"INFO:␣only␣{len(detections)}␣detections;␣retrying␣

with␣a␣more␣sensitive␣preset")

1364 fallback_opts = ProcessingOptions(

1365 background_subtraction=True ,

1366 background_kernel=max(processing_options.

background_kernel , 71),

1367 normalize=True ,

1368 threshold_multiplier =1.25,

1369 morph_open=False ,

1370 morph_kernel=processing_options.morph_kernel ,

1371 morph_iterations=processing_options.morph_iterations ,

1372 min_area=3,

1373 max_area=processing_options.max_area ,

1374 max_stars =400,

1375 saturated_threshold=min(processing_options.

saturated_threshold , 215),

1376 allow_oversized_saturated=True ,

1377 )

1378 debug_images_fb = {} if STAR_SAVE_DEBUG_INTERMEDIATES else

None

1379 detections = detect_stars(img_gray , options=fallback_opts ,

mask=detection_mask , debug_images=debug_images_fb)

1380 if debug_images_fb is not None:

1381 _write_debug_images(f"{img_stem}_detect_fallback",

debug_images_fb , out_dir=debug_dir)

1382 print(f"Detected␣{len(detections)}␣star␣candidates␣after␣

fallback")

1383 if len(detections) < 2:
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1384 print("WARN:␣Insufficient␣detections␣(<2)␣even␣after␣

fallback;␣writing␣detections -only␣overlay.")

1385 annotated_fail = annotate_detections_only(img_bgr ,

detections , header="ATTITUDE␣FAILED:␣too␣few␣detections"

)

1386 cv2.imwrite(output_path , annotated_fail)

1387 return

1388

1389 # Pixels -> 3D rays

1390 pixels_to_unit_vectors(detections , img_gray.shape ,

hardware_params=camera_params_override)

1391

1392 # Catalog pairs

1393 pair_table , angle_bin_rad = build_catalog_pair_table(catalog)

1394

1395 # Attitude via RANSAC + TRIAD + Davenport

1396 min_inliers = max(2, min(STAR_ATTITUDE_MIN_INLIERS , len(

detections)))

1397 try:

1398 R, inliers = attitude_from_star_pairs_ransac(

1399 detections , catalog , pair_table , angle_bin_rad ,

1400 max_iterations=STAR_ATTITUDE_MAX_ITER ,

1401 max_inlier_err_deg=STAR_ATTITUDE_MAX_ERR_DEG ,

1402 min_inliers=min_inliers ,

1403 )

1404 except Exception as exc:

1405 print(f"ATTITUDE␣FAILED:␣{exc}")

1406 annotated_fail = annotate_detections_only(img_bgr ,

detections , header="ATTITUDE␣FAILED")

1407 cv2.imwrite(output_path , annotated_fail)

1408 return

1409 print(f"Found␣attitude␣with␣{len(inliers)}␣inliers")

1410 debug_residuals(R, detections , catalog , inliers)
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1411 extra_matches = match_all_detections(R, detections , catalog ,

max_err_deg=max(STAR_ATTITUDE_MAX_ERR_DEG , 0.3))

1412 all_matches = inliers + extra_matches

1413

1414 # Attach matches to detections

1415 for det_idx , cat_idx in all_matches:

1416 detections[det_idx ]. catalog_idx = cat_idx

1417

1418 # Boresight RA/Dec

1419 ra_deg , dec_deg = rotation_to_boresight_radec(R)

1420 print(f"Boresight␣pointing:␣RA={ ra_deg :.3f}␣deg␣␣Dec={ dec_deg

:.3f}␣deg")

1421

1422 # Annotation

1423 annotated = annotate_image(img_bgr , detections , catalog ,

all_matches ,

1424 (ra_deg , dec_deg))

1425 cv2.imwrite(output_path , annotated)

1426 print(f"Annotated␣image␣written␣to␣{output_path}")

1427

1428

1429 def main() -> None:

1430 processing_opts = STAR_PROCESSING_OPTIONS or processing_preset(

STAR_PROCESSING_MODE)

1431 base_path = STAR_IMAGE_PATH

1432 image_paths: List[Path] = []

1433 if base_path.is_dir ():

1434 image_paths = sorted(p for p in base_path.glob("IMD_*.png")

if p.is_file ())

1435 elif base_path.exists ():

1436 image_paths = [base_path]

1437 elif STAR_IMAGE_FALLBACK.exists ():

1438 image_paths = [STAR_IMAGE_FALLBACK]

1439 if not image_paths:
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1440 raise RuntimeError(

1441 f"No␣input␣images␣found.␣Tried␣directory/file␣{

STAR_IMAGE_PATH}␣and␣fallback␣{STAR_IMAGE_FALLBACK}"

1442 )

1443

1444 print(f"Processing␣{len(image_paths)}␣image(s)")

1445 for image_path in image_paths:

1446 print(f"->␣{image_path}")

1447 image_cfg = ImageInputConfig(

1448 path=str(image_path),

1449 rotate_deg=STAR_ROTATE_DEG ,

1450 resize_to=STAR_RESIZE_TO ,

1451 )

1452 # Build mask that keeps the overlap region and removes

borders

1453 mask = _load_precomputed_mask(image_path)

1454 gray_for_mask = None

1455 if mask is None:

1456 if STAR_AUTO_OVERLAP_MASK:

1457 gray_for_mask = cv2.imread(str(image_path), cv2.

IMREAD_GRAYSCALE)

1458 if gray_for_mask is None:

1459 raise RuntimeError(f"Could␣not␣read␣image␣for␣

mask:␣{image_path}")

1460 mask = _quadrilateral_mask_from_image(

1461 gray_for_mask ,

1462 thresh_percentile=STAR_AUTO_MASK_PERCENTILE ,

1463 close_kernel=STAR_AUTO_MASK_CLOSE_KERNEL ,

1464 erode_px=STAR_AUTO_MASK_ERODE ,

1465 )

1466 if STAR_SAVE_DEBUG_INTERMEDIATES:

1467 _write_debug_images("mask_build", {"auto_mask":

mask , "input_for_mask": gray_for_mask })

1468 elif STAR_MASK_BORDERS_PX:
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1469 top , bottom , left , right = STAR_MASK_BORDERS_PX

1470 gray_for_mask = cv2.imread(str(image_path), cv2.

IMREAD_GRAYSCALE)

1471 if gray_for_mask is None:

1472 raise RuntimeError(f"Could␣not␣read␣image␣for␣

mask:␣{image_path}")

1473 H, W = gray_for_mask.shape

1474 mask = np.zeros((H, W), dtype=np.uint8)

1475 mask[top : H - bottom , left : W - right] = 1

1476

1477 # Optional Jupiter/glare mask; combine and save for preview

1478 if STAR_SAVE_JUPITER_MASK:

1479 if gray_for_mask is None:

1480 gray_for_mask = cv2.imread(str(image_path), cv2.

IMREAD_GRAYSCALE)

1481 if gray_for_mask is not None:

1482 glare_mask = _compute_jupiter_mask(gray_for_mask)

1483 # Save glare mask for preview (even if None -> save

all zeros)

1484 STAR_DEBUG_DIR.mkdir(parents=True , exist_ok=True)

1485 glare_path = STAR_DEBUG_DIR / f"{image_path.stem}

_jupiter_mask.png"

1486 if glare_mask is None:

1487 blank = np.zeros_like(gray_for_mask , dtype=np.

uint8)

1488 cv2.imwrite(str(glare_path), blank)

1489 else:

1490 cv2.imwrite(str(glare_path), glare_mask * 255)

1491 # Apply to detection mask (AND with inverse)

1492 if mask is None:

1493 mask = np.ones_like(glare_mask , dtype=np.

uint8)

1494 mask = (mask.astype(np.uint8) & (1 - glare_mask

).astype(np.uint8)).astype(np.uint8)
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1495 if STAR_SAVE_DEBUG_INTERMEDIATES:

1496 overlay = _make_overlay(glare_mask * 255,

_to_uint8_debug(gray_for_mask))

1497 cv2.imwrite(str(STAR_DEBUG_DIR / f"{

image_path.stem}_jupiter_mask_overlay.

png"), overlay)

1498

1499 output_path = image_path.with_name(f"{image_path.stem}

_annotated.png")

1500 run_star_tracker(

1501 image_path=str(image_path),

1502 catalog_path=str(STAR_CATALOG_PATH),

1503 max_catalog_mag=STAR_MAX_CATALOG_MAG ,

1504 output_path=str(output_path),

1505 processing_options=processing_opts ,

1506 image_config=image_cfg ,

1507 camera_params_override=STAR_CAMERA_OVERRIDE ,

1508 denoise_config=STAR_DENOISE_SETTINGS if APPLY_DENOISING

else None ,

1509 detection_mask=mask ,

1510 )

1511

1512

1513 if __name__ == "__main__":

1514 main()

Listing A.2: Star tracker script
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