Danmarks

'_I'ekm' _ske P
Universitet oo
S

Jupiter Horizon Investigation
Image Analysis 30330

AUTHORS

Andrey Galkin - $252898
Vojtech De Coninck - 252918

December 19, 2025

Contents

(1__Introduction| 1
(.1 JUNO Missionl 1
(1.2 Problem statementlo 2
[1.3 Research goals| 2

2 Background and Datal 4
2.1 Juno ASC’s cameralo 4
[2.2 Dataset description|)
23 SPICE toolkitl 7

13 Image Processing] 9
3.1 Radiometric Calibration| o oL 9

B.1.1 Dark frame subtraction], 9
B.1.2 Residual sensor artifactsl o 0oL 10
3.2 External Noise Mitigation| 12
3.2.1 Radiation noise characterizationl 12
[3.2.2 Gradient-based filtering| 0oL 13
[3.3 Despinning| 14
[3.3.1 Odd/even field decomposition| 15
[3.3.2 Rotation alignment and merge] 15
3.4 Lens Distortion Correctionl. L L 18
3.4.1 Mathematical modello o000 18
[3.4.2 Distortion magnitude determination| 19

CONTENTS il
3.5 Performance Benchmarkl 00 0. 20
[3.5.1 Implementation|. Lo 20

[3.5.2 Onboard teasibility analysig| 20

[3.6 Final Output| 22
4__Horizon Detection| 24
4.1 _Problem statement & Motivationl00 24
4.2 Gradient-based Edge Trackingl. 24
4.3 Circle Fitting Method| oo oo 25
4.3.1 Validity of local circle approximation| 25

4.3.2 Algorithm selection and validation| 26

4.4 Comparison with SPICE output|. 28
Mo Conclusions| 29
[6Star Mapping] 30
D1 Star Detection|o 30
.11 Dual mask constructionl 0. 31

0.1.2 Centroid extractionl. L oL 32

[b.2 Star Catalogue| 33
b.2.1 Catalogue selection| 33

b.2.2 Negligibility of Parallax effects| 33

.23 Tnertial vector conversionl 34

H.3 Attitude Estimation|o 34
b.3.1 Pattern ambiguity] o Lo 34

[b.3.2 Camera ray projection| 35

h.3.3 Fast candidate searchl 000 36

[5.3.4 Robust solver (RANSAC/Wahba)[. 37

b.3.5 Boresight calculation| 39

5.3.6 Mapping results|. 39

|6 Applications| 40
6.1 Juno’s position vector| 40

CONTENTS iii
6.1.1 Constructing the position vector] 41

[6.1.2 Consistency checks| 00 44

[6.1.3 Transtforming to Jupiter-centric coordinates| 45

6.2 Atmospheric Investigation| 0oL 46
[6.2.1 Spatial resolution| o o 46

[6.2.2 Validation of thermosphere detection| 47

7D . [Condusions 50
[f1 Discussionl o 50
[r.1.1 What works best for this Juno dataset| 50

[[.1.2 Timitations and sources of errorl. 51

[r2 Conclusions 54
[7.2.1 Main findings| 54

[.2.2 Recommendations for future workl 54

A AdDG B = 58
[A.1 Star recognition output from whole dataset| 58
[A2 Source Codel. o 60
[A2.1 Mainscript| 60

[A.2.2 Star tracker script|o oo 90

Chapter 1

Introduction

1.1 JUNO Mission

JUNO is a NASA spacecraft dedicated to the investigation of Jupiter’s interior, atmo-
sphere, and magnetospheric environment from a polar, highly elliptical orbit. This trajec-
tory creates short perijove windows with rapidly changing observation geometry, separated
by long arcs far from the planet. An overview of the orbit evolution and close-approach
passes is shown in Fig.

JUNO is spin-stabilized, which simplifies attitude dynamics but introduces image mo-
tion for instruments integrating during spacecraft rotation. The original mission baseline
envisioned two initial 53-day orbits followed by a period reduction to 14 days. However,
due to concerns in the main-engine feed system (check-valve behavior), this maneuver was
not executed and the mission remained in the longer-period orbit, reducing operational
risk while preserving the perijove science geometry [1].

Following completion of the prime objectives, NASA approved an extended mission
in which the orbit continues to evolve and enables additional science, including targeted
encounters in the Jovian system [2 3]. At end-of-mission, the spacecraft is planned to be
disposed by a controlled entry into Jupiter’s atmosphere to satisfy planetary protection
requirements [2].

The spacecraft carries four DTU Advanced Stellar Compass (ASC) star trackers, pri-

marily providing precise attitude information to the magnetometer system [4]. During

CHAPTER 1. INTRODUCTION 2

Juno prime Mission

nymede Europa =

= = .
- 2 o o

- Extended Mission

Figure 1.1: Overview of JUNQO'’s orbit evolution and perijove passes around Jupiter (prime
and extended mission). [2]

selected perijove intervals, these cameras are commanded to acquire imagery containing
Jupiter’s limb. Although the ASC is not designed as a science imager, these horizon views

provide insights about Jupiter’s atmosphere.

1.2 Problem statement

The ASC does not output a fully synchronous frame. Due to the staggered readout
scheme (Section , each acquisition contains two interleaved fields captured at different
times, which introduces intra-frame misalignment during spacecraft spin. In addition,
the orbit environment and sensor characteristics generate strong outliers and background
structure that bias direct feature extraction.

The dataset therefore presents two coupled challenges. First, the raw frames must
be converted into a calibrated consistent representation. Second, the signals of interest (a
short limb arc and a sparse star field) must be extracted robustly. The required corrections

and their implementation are treated in Chapter

1.3 Research goals

The assignment specification was intentionally open-ended. The work therefore focuses
on the aspects of the dataset that are most relevant for geometric reconstruction and

atmospheric interpretation. The objectives are:

e Construct an image processing sequence that converts raw ASC acquisitions into

Page 2 of

CHAPTER 1. INTRODUCTION 3

calibrated, denoised, and geometrically corrected frames (Chapter [3)).

e Compensate the odd/even readout misalignment by despinning and merging both

fields into a single consistent image (Section .

e Extract Jupiter’s apparent horizon from the corrected frames and validate the result

against a SPICE-derived reference (Chapter [4)).

e Detect and match background stars to an inertial catalogue to estimate camera point-

ing from the same frames (Chapter [5)).

e Combine limb geometry and star-derived attitude to recover an image-constrained
spacecraft position estimate, and derive basic horizon-referenced atmospheric observ-

ables where supported by the data (Chapter @

Page 3 of

Chapter 2

Background and Data

2.1 Juno ASC’s camera

The Advanced Stellar Compass (ASC) is an instrument providing attitude measure-
ments to Juno’s magnetometers. It consists of two pairs of Camera Head Units (CHUs)
placed at the end of one of Juno’s 3 solar arrays, 8 and 10 meters from the spacecraft’s
body to mitigate electromagnetic disturbance. Each CHU is a star tracker monochrome
8-bit camera with a 19°x13.5° field of view and a 752x580 pixel CCD sensor. For optimal
performance in a high radiation environment, the sensor lowers its integration time by
using the built-in electronic shutter. The full integration time is divided evenly between
two image fields : the odd-numbered rows are read out in the first field, followed by the
even rows in the second field after a fixed delay At. Due to Juno’s spin during this delay,
the result consists of two clearly misaligned row sets, which must be accounted for during
image processing [4].

In addition to the odd-even row misalignment, the ASC operates under low-light con-
ditions with short exposure times, making the images inherently photon-limited. As a
result, shot noise and readout noise contribute significantly to the background intensity
fluctuations. This noise floor noticeably limits the detectability of faint stars.

Furthermore, the sensor is affected by spatial non-uniformities, including pixel-to-pixel
gain variations and fixed-pattern noise. These artefacts can introduce bias in local back-

ground estimation and star flux measurements. These effects should likewise be considered

CHAPTER 2. BACKGROUND AND DATA 5

1B

coordinate Readout Layer Transfer

Col0 |Col 1 [Col2 |Col 3 |Col4 | Col 5
oB
coordinate RowO [| [T It | T
/ \ __..9 v frame H— =
)) y Row 1 | — — [—- — [o @
p 4 g
/ A T — 8
3 \ o A z row2 |+ [+ [+ [L L 5
) \ Lo X > H— | HH |HH THH THH L HH 3
v X G M Row3 [[l] 8
X X ¥ 22 Rowd [+ ||+l
2 o im Iid in In I=m I=m
Juno spacecraft e Row6 |l S e Y | ||
coordinate frame
Amp
| I R R |
N

Horizontal Transfer ‘

ConJ2024.021

Figure 2.2: Principle of CCD op-
eration. Photosensitive integration
layer in white, shuttered layer in

gray. Sketch shows integration of
Figure 2.1: CHU disposition on Juno [5] first image field [6]

during processing (e.g. using reference images).

Scenes containing bright objects, such as Jupiter or its illuminated limb, can induce
intense stray light and scattering within the lens system. This results in extended intensity
gradients and halo structures that are not associated with point sources. Such features
distort the local background and can suppress or falsely trigger star detections if not
explicitly masked.

Finally, residual geometric distortions introduced by the lens lead to systematic devi-

ations from an ideal pinhole camera assumption.

2.2 Dataset description

All of this paper’s work and conclusions are derived from 6 images captured by the
ASC’s Camera Head Unit D. They were all taken during the rare perijove passage (when
the orbit has the lowest altitude) over Jupiter’s North Pole. During this window, the Jovian
horizon is observed at a very high slant angle, providing imaging of the upper atmosphere
for a short time, before returning to deep space star field observation.

The dataset consists of 3 pairs of images taken 30 seconds apart. Within a pair of
images, they are are taken exactly 500ms apart. Due to the spacecraft’s high speed and

rotation, the observation geometry drastically changes from one pair to the next. All ac-

Page 5 of

CHAPTER 2. BACKGROUND AND DATA 6

quisitions were made on September 12 2019 from 3:22:25.714 to 3:23:26.714 UTC. The
filename of each acquisition encodes a timestamp, formatted as a floating-point scalar.
This value denotes the number of seconds elapsed since the J2000 epoch (January 1, 2000,
12:00:00 UTC), allowing for sub-millisecond synchronization with the spacecraft’s trajec-
tory data. [7]

The first pair is right before Jupiter enters the camera’s field of view. Naturally, they

provide little interest in analyzing Juno’s atmosphere.

Figure 2.3: Pre-encounter observation (gained x4)

The second pair is right after the planet enters the camera’s field of view. A very short
and dark limb of the night side if the planet is observed. The primary features of interest
in these frames are the atmospheric intensity drop-off and an aurora visible in the bottom

right corner.

Figure 2.4: Atmospheric encounter (gained x4)

Finally, the third pair presents the greatest scientific interest. Visually, the image

Page 6 of

CHAPTER 2. BACKGROUND AND DATA 7

appears to capture a terminator line separating a bright region (day side) from a dimmer
one (night side). However, this feature is not the true day/night terminator, but rather

an effect of atmospheric scattering of sunlight. The terminator line is out of bounds,

positioned below the image frame.

Figure 2.5: Atmospheric scattering

2.3 SPICE toolkit

To accurately interpret the 2D imagery acquired by the ASC, it is necessary to recon-
struct the precise 3D observation geometry at the exact moment of capture. This was
achieved using the SPICE toolkit, a library provided by NASA’s Navigation and Ancil-
lary Information Facility. SPICE stands for Spacecraft, Planet, Instrument, C-matrix and
Events. It is used to handle planetary mission geometry, time conversions, and reference
frame transformations. It relies on data files known as "kernels," which model the Juno

mission environment:

e SPK (Spacecraft Planet Kernel): Provides the trajectory of the Juno spacecraft and

the position of the Sun and Jupiter

e CK (C-matrix Kernel): Provides the attitude of the spacecraft, allowing to determine

the pointing vector of the camera
e PCK (Planetary Constants Kernel): Provides the physical properties of Jupiter

In this study, CSPICE was used for these critical tasks:

Page 7 of

CHAPTER 2. BACKGROUND AND DATA 8

e Surface intercept and horizon determination : By combining the spacecraft’s position
vector with the camera’s pointing vector, each pixel’s line-of-sight was projected onto
Jupiter. This maps the 2D image plane to the 3D planetary surface, allowing to
determine the "true" boundary between the planet and space on the image. This

gives a comparison metric for the horizon detection algorithm.

e Distance and scale validation: The toolkit computes the exact slant range, i.e the
distance between the spacecraft and the horizon line, which is about 60,000 km for
the dataset. This measurement, alongside camera parameters, serves as a baseline

to derive spatial resolution, required to convert pixels into physical kilometers.

As handling these tools is complex enough and not the primary focus of this study,
LLMs were used for code generation in MATLAB to retrieve geometric data. These mea-
surements were double-checked for plausibility and consistency given the mission’s con-

straints.

Page 8 of

Chapter 3

Image Processing

3.1 Radiometric Calibration

The first image processing step is to isolate the signal from sensor-intrinsic artifacts.
This process addresses two categories of noise: stochastic thermal noise (dark current) and

systematic readout structures (fixed pattern noise).

3.1.1 Dark frame subtraction

The primary calibration step involves the subtraction of a dark reference frame, gener-
ated by averaging multiple exposures taken with the shutter closed at the same operating

temperature and integration time as the science data. This process serves a dual purpose:

1. Thermal correction: it removes the stochastic dark current noise. This is a thermal
phenomenon where silicon atoms spontaneously release electrons, mimicking light
signals. They accumulate during exposure and appear as signal in the image, making
dark current noise extremely temperature and exposure dependent. Since it is purely

additive, the reference dark frame can be subtracted from the raw image.

2. Fixed pattern noise removal: The ASC sensor exhibits a vertical oscillatory pattern
caused by gain variations in the column readout amplifiers. Since this pattern is

systematic and stable over time, it is captured in the dark frame.

By subtracting the reference frame from the raw image, both the thermal baseline and

CHAPTER 3. IMAGE PROCESSING 10

the vertical stripes are effectively eliminated in a single operation:

Icorr(xa y) = Iraw(xa y) - Idark(xv y)

Figure 3.1: Before and after dark frame subtraction (images gained x10). The background
is much darker and vertical stripes are removed.

Alternatively, the oscillatory pattern and the DC component could be filtered in the
frequency domain. Since the readout noise is a vertical periodic oscillation, its spectrum
is concentrated on the horizontal axis of the 2D Fourier transform (see |3.2). Notching
the peak at frequency 0 would reduce overall brightness. Notching the secondary peaks
would remove the periodic noise. However, this approach is only of theoretical interest
and suboptimal compared to dark frame subtraction. Indeed, notching introduces ringing
artifacts near high-frequency features such as stars, degrading the signal. In addition, FFT

is computationally far heavier than simple integer substraction.

3.1.2 Residual sensor artifacts

Following the dark subtraction, residual systematic artifacts persist in the calibrated
image. The most prominent feature is a localized, additive brightness gradient visible on
the left edge of the sensor. Physically, this phenomenon (known as amplifier glow) is a
consequence of the sensor’s architecture. The power supply and readout electronics are
located along the left side of the silicon die. During the readout process, these components
dissipate power, leading to localized heating. This power dissipation creates a thermal

gradient across the silicon substrate. Since dark current generation is exponentially depen-

Page 10 of

CHAPTER 3. IMAGE PROCESSING 11

14
12
10
8
6
4
-100
2

Vertical Frequency

2D FFT Magnitude (3D Perspective View)

Log Magnitude
co
|

200 100

WW
0 -100 300

Horizontal Frequency

Figure 3.2: 2D Fourier transform of dark frame

dent on temperature, pixels in close proximity to the warm power supply rails accumulate
significantly more thermal charge than those in the cooler center of the array.

To eliminate these column-correlated artifact, a column-median subtraction filter is
employed. This method relies on the fact that the majority of field of view captures deep
space. Consequently, the statistical median of any column provides an estimate of the
background bias level for that column, independent of bright features such as stars or the

planetary disk.

25

N
o

Intensity
o

—_
o

0 "
0 200 400 600 800
Pixel (horizontal)

Figure 3.3: Line scan of raw (in red) and calibrated (in blue) background intensities (mov-
ing average). The calibration successfully removes amplifier glow (on the left-hand side)
and background bias.

Page 11 of

CHAPTER 3. IMAGE PROCESSING 12

3.2 External Noise Mitigation

3.2.1 Radiation noise characterization

Jupiter’s radiative environment The Juno spacecraft operates in a harsh radiation
environment, primarily dominated by the Jovian radiation belts. As it approaches the
poles, the flux of particles in the magnetosphere increases by several orders of magnitude.
The CCD is exposed to ionizing radiation flux, specifically high-energy electrons. For a
star tracker, which relies on identifying stable constellations, this creates a false depiction
of the sky by adding thousands of transient bright spots, interpreted as stars. Therefore,
removing these bright features is not an enhancement step : it is absolutely necessary to
retrieve scientific data from the image.

Juno ASC Counts (log) Flux

Distance (Ry)
log (ASC count)

Figure 3.4: Sensor-particle in- i
0O 2 4 6 8 10 12 14 16 18

teraction [6] Distance (R,)

Figure 3.5: Jovian magnetosphere particle flux [6]

Particle-sensor interaction The ASC sensor is equipped with radiation shielding that
significantly reduces the flux of particles reaching the CCD. While it efficiently blocks pro-
tons and electrons <10MeV, higher energy particles have enough momentum to penetrate
the shielding enclosure. The particles that do reach the CCD liberate charge that is col-
lected for a single frame. The noise is therefore transient : it appears in one frame and is
completely uncorrelated in the next one.

In the image, an electron appears as a very high intensity isolated pixel because it

deposits a large amount of kinetic energy in a single potential well of the CCD. This

Page 12 of

CHAPTER 3. IMAGE PROCESSING 13

"impulse" characteristic makes noise distinguishable from other light sources. The optical
system is designed to spread out focal objects (i.e. stars) over a Point Spread Function

with an area larger than 4 pixels [6] (see [3.7).

Line Scan (Row 233)

120 120
100 100
> 80 > 80
z z
= =
8 60 g 60
£ E
40 40
20 20
o L 0
0 10 20 30 40 50 410 420 430 440 450
Pixel Column Pixel Column Figure 3.7: Radiation noise

(dots) and stars from cali-

Figure 3.6: Blue line indicates radiation hit, characterized
brated image

by a pixel-wide impulse (Dirac delta function). Red line
represents a star, displaying a broader Gaussian distribu-
tion consistent with the optical PSF.

3.2.2 Gradient-based filtering

The algorithm determines which pixels are valid data and which are radiation speckles.
To preserve the edges of the planets and the star field, the chosen topology is a gradient-
based switching median filter. Unlike a standard median filter that processes every pixel
(potentially blurring fine details), this method is conditional, meaning it only modifies
pixels identified as defective based on a gradient threshold. The detection logic relies
on the morphological difference between the sharp profile of a radiation speckle and the

smoother gradient of a Point Spread Function (cf. [3.6).

Step A : Gradient detection The main challenge is to wisely choose the threshold.
If it is set too low, false detections will occur. Stars will be treated as detected particles
and removed. If set too high, radiation speckles will be interpreted as stellar candidates.

There are 2 cases to separate :

e Light sources : The optics are calibrated to have a finite Point Spread Function. The

Page 13 of

CHAPTER 3. IMAGE PROCESSING 14

signal from a star is normally distributed.

Lstar(r) e~"?/20°

e Radiation noise : a particle enters and exit the same pixel sensor (in most cases).
This results in a high-intensity impulse signal. The gradient between the speckle and

the neighbor is nearly equal to the amplitude of the hit itself/
Irad(l'a y) =A- 6($ —20,Y — yO)
Therefore, by setting a gradient threshold Ty,,q such that:

max(Viaer) < Tyred < min(Vigq)

the filter can effectively separate the two sets.

Step B : Median Replacement Pixels flagged by the gradient check are replaced using
a kernel restricted to the nearest orthogonal neighbors (top bottom left right). This method

is preferred to a box or Gaussian filter to preserve the edge of Jupiter’s limb.
P'flew(w,y) = median{P('x:y - 1)7 P(.’L’, Yy + 1),P(£L’ - 17 y)7 P(.le + 17y)}

This approach is supported by literature [§], where Van Dokkum demonstrated that
cosmic rays can be robustly distinguished from stars by analyzing the sharpness of their

edges (using Laplacian or gradient derivatives) rather than just their intensity.

3.3 Despinning

Due to the ASC staggered readout (cf. , a single “image” actually contains two
interleaved fields captured at different times. During the fixed delay At between the odd-
and even-row readouts, Juno rotates, causing a systematic duplication and misalignment

of all scene features. Despinning compensates this intra-frame motion by mapping the

Page 14 of

CHAPTER 3. IMAGE PROCESSING 15

even field back to the odd-field acquisition time, after which both fields are merged into a

single geometrically consistent frame.

3.3.1 0Odd/even field decomposition

Let I(u,v) denote the raw 752 x 580 image, with u the column index and v the row

index. The two half-height fields are extracted by row decimation:

Toyen(u,y) = I(u,2y + 1) (3.1)

Iodd(ua y) = I(U, 2y) y e [O? 289] (32)

Tepen, and 1,44 seem to be inverted because the index starts with 0. Line number 1 (odd)

corresponds to I(u,0).

3.3.2 Rotation alignment and merge

For accurate alignment, the motion between both fields is modeled as a 3D rotation
of the camera’s line-of-sight vectors. The process begins by transforming the spacecraft’s
angular velocity vector wgc, which is defined in the spacecraft body frame, into the cam-
era’s reference frame (see figure . This is achieved using the fixed mounting rotation

matrix Rgo_scam:

Weam = Rsc—cam wWsc (3'3)

From this angular velocity vector, the unit rotation axis k and the scalar rotation angle
0 are defined as :

k= _Cm g |w||At (3.4)

)
[[weaml|

Using w = 11.967° /s and At = 125ms yields Af = 1.496°

Each pixel (u,v) is assigned a 3D vector which represents a pinhole ray using the

Page 15 of

CHAPTER 3. IMAGE PROCESSING 16

intrinsic camera parameters :

(u—cz) pa/f
r=1(—cy)py/f (3.5)
1

l\‘ U Axjg

\/ axis
Spacecraft Prirlh:‘.ipal
: _— point P
coordinate Extrinsic
system rotation
matrix R s
X axis A0e
.Ofane
Y axis Camera
: coordinate
Z axis
system

Y axis

Figure 3.8: Rotation between SC and camera coordinate systems [9].

The rotation from a frame to another is applied using Rodrigues’ rotation formula
allowing to spin a vector around an arbitrary axis k [10]. For a target pixel in the even
field, its corresponding 3D vector r is rotated around the axis k by angle 6 to align it with

the odd-field timestamp (see figure . The rotated vector r’ is given by:

r' =rcosf + (k xr)sinf + k(k - r)(1 — cosb) (3.6)

Finally, this rotated vector r’ is reprojected onto the 2D sensor plane to determine the
motion-compensated pixel coordinates (u/,v'), allowing the even field to be merged seam-
lessly with the odd field. Since the even field has half the vertical sampling, the corre-
sponding even-field row index is

, v -1
YT

The intensity is obtained by bilinear interpolation of Ioven(u',y’). Pixels whose back-

Page 16 of

CHAPTER 3. IMAGE PROCESSING 17

N

7
o~
>
=

ROTATED
ORIGINA PIXEL

pIXEL

o SpIN AXIS IN
CAMERA FRAME

Figure 3.9: Rotation of the camera’s pointing vector around the SC’s spin axis (expressed
in camera frame).

projected coordinates fall outside the even-field bounds are assigned zero, which explains
the residual border artifacts observed after despinning.

The two fields are finally merged into a single full-resolution image by interlacing. The
odd rows are taken directly from I,qq, while the even rows are filled with the motion-
compensated samples from Ioyen_oqa €valuated on the even-row grid. This preserves the

original 752 x 580 sampling. The total despinning result is shown in Fig. [3.10

(a) Raw ASC image (b) Despinned image

Figure 3.10: Effect of the despinning procedure.

Page 17 of

CHAPTER 3. IMAGE PROCESSING 18

3.4 Lens Distortion Correction

The preceding analysis implicitly relied on the pinhole camera model, which assumes
the lens is a single point without geometry. Lens distortion is a deviation from the ideal
projection in the pinhole model. It is a form of optical aberration where straight lines

appear bent in the CCD due to lens curvature (cf|3.11]).

Image with
pincushion distortion

Rear stop l

Lens

© Vison-Doctor.com

=

=

Object

Figure 3.11: Lens distortion origin [11]

3.4.1 Mathematical model

The image can be corrected using a simplified Brown-Conrady transformation, consid-
ering only the first-order radial distortion term. To handle the sensor’s non-square pixel
geometry (dx = 8.6um,dy = 8.3um), a pixel aspect ratio a = dy/dz is introduced.

The transformation relates a point in the undistorted image space to the distorted image

space:

Undistorted Brown-Conrady Distorted
coordinates up, vy transformation coordinates Uy, vy

Read
pixel value
from target

position

T =Up — Ue
y = a(v, —ve)
ug = ue + (1 + Kr?)

v = ve + y(1 + rr?) Jox
(3.7)

Figure 3.12: Transformation in image spaces [9]

where (uy,,v,) are the coordinates in the undistorted image, (ug,vq) are the coordinates

Page 18 of

CHAPTER 3. IMAGE PROCESSING 19

in the distorted image, r = \/m is the distance from optical center, (uc,v.) the
coordinates of the optical center, and « a distortion coefficient.. A positive coefficient
indicates a pincushion distortion, i.e the lines bend inwards [9].

It is important to note that these equations solve the inverse problem : they solve
for the input (distorted image) based on the output (corrected image). An inverse mapping
is therefore implemented : instead of iterating over the input image and projecting pixels
forward, the algorithm iterates over every coordinate (uy, vy,) in the target image, computes

the corresponding (uq,v4) and samples the correct intensity value.

3.4.2 Distortion magnitude determination

To assess the scale of the distortion in the Juno data, a simulation was run with the
optical parameters of the ASC’s camera:

Pixel U

574 -

k=33-10"8

o (uc,ve) = (383,257)

578 -

Pixel V

e (W,H)=(752,580)

580 -

e (DX,DY)=(8.6,8.3) pm

a=DY/DX=0.965

584 =
I

Ideal Grid
Distorted Grid

Figure 3.13: Lens distortion simulation (zoomed on corner)

In the simulation the distorted grid (red) is projected over the ideal grid of pixels
(gray). The distortion is radially dependent, reaching its maximum at the image corners, .
In these peripheral regions, the displacement is 3-4 pixels. While visually unnoticeable, it
is absolutely non-negligible in the context of atmospheric investigation. Neglecting those

few pixels can translate in a geolocation error of hundreds of kilometers.

Page 19 of

CHAPTER 3. IMAGE PROCESSING 20

3.5 Performance Benchmark

This section evaluates the computational resources needed to execute the image pro-
cessing sequence. The feasibility of running the process on the onboard pASC is assessed
given the hardware specifications. One crucial detail is that only the star tracking needs
to be performed in flight. If a processing step is numerically too intensive to determine
attitude, it can be left out if it does not affect the result too much. The atmospheric

investigation is ground-based, therefore computational resources are not a limitation.

3.5.1 Implementation

The most computationally demanding stages of the pipeline are the geometric trans-
formations: despinning and lens correction. To assess their viability on onboard hardware,
they were implemented in C+-+. The logic relies on a standard optimization technique

that decouples time-invariant map generation from real-time pixel processing.

Pre-computation Since the lens distortion and rotation parameters are constant for
the ASC instrument, the coordinate transformation map is time-invariant. Therefore, the
computationally heavy fields are computed only once during initialization. Two floating-

point matrices (Look-Up Tables) are generated and stored in memory.

Remapping In flight, the correction is applied to incoming raw frames by referencing the
pre-computed LUTs. Because the calculated source coordinates rarely align with integer
pixel centers, the algorithm employs bilinear interpolation to resample the pixel intensity.
This separation allows the heavy trigonometric and polynomial calculations to be front-

loaded, leaving only memory lookups and interpolation for the real-time loop.

3.5.2 Omnboard feasibility analysis

The analysis in table demonstrates that the full image processing sequence is infea-

sible for the onboard pASC microcomputer due to two primary constraints :

e Processing Latency: The ASC operates on a 250 ms cycle (4 Hz) [4]. While the

geometric correction takes only 22 ms on a 3.6 GHz laptop, onboard processors (op-

Page 20 of

CHAPTER 3. IMAGE PROCESSING

21

Processing Step

‘ Laptop Benchmark | Onboard Feasibility

Memory (RAM)

Input Image (8-bit raw) 0.42 MB Feasible
Output Image (8-bit processed) 0.42 MB Feasible
Despin Maps (2x 32-bit float) 3.33 MB Inefficient
Lens Correction Maps (2x 32-bit float) 3.33 MB Inefficient
Total RAM Required ~'7.5 MB Borderline
Processing Time

Initialization & Map Computing 102.4 ms N/A (One-time)
Dark Frame Calibration 4.6 ms Feasible
Column-Median Subtraction 72.1 ms Critical
Speckle Removal 49.3 ms High Load
Geometric Correction (Despin + Lens) 22.4 ms Critical (FPU Load)
Total Latency per Frame ~148.4 ms Infeasible

Table 3.1: Feasibility analysis: processing time and memory requirements for onboard

execution (single frame)

erating at <100 MHz with limited Floating-Point Unit capabilities) would execute

these floating-point interpolations orders of magnitude slower. The estimated on-

board execution time would exceed 1 second per frame, causing a processing timeout

that would disrupt the star tracker’s critical attitude determination function.

e RAM Efficiency: Storing the high-precision LUTs for geometric correction requires

approximately 7.5 MB of RAM. While technically possible within the hardware lim-

its, allocating so much of the available memory to static maps is highly inefficient

and competes with critical buffers required for star catalogs.

In conclusion, the image processing sequence is NOT feasible in its current form on the

BASC due to strict 250ms time budget. This was expected, as the star-tracking microcon-

troller was not optimized for image cleaning, but sparse feature extraction (analyzing star

shapes) rather than transforming the full 436,000 pixel array. The hardware specifications

(RAM, CPU clock speed) are constrained to the bare minimum required for this primary

function. The pASC should remain focused on lightweight tasks such as simple particle

enumeration (thresholding), while the high-load image analysis must be reserved for the

ground segment. Further work could analyze the feasibility of skipping certain numerically

Page 21 of

CHAPTER 3. IMAGE PROCESSING 22

heavy steps, such as lens correction and median subtraction, and still keeping acceptable
tolerance for attitude determination. That would leave only crucial steps such as bias
subtraction and de-rotation in the lighter processing sequence.

sta

3.6 Final Output

The image processing chain has successfully transformed raw, noisy sensor data into
calibrated scientific imagery. As summarized in figure the process systematically

addressed the environmental and hardware-specific challenges of the JUNO mission. The

Dark Frame Column-median
Calibration substraction

INPUT

Radiation Noise
Mitigation

Lens Distortion
Correction

OUTPUT

Despinning

Figure 3.14: Image processing flowchart

final output exhibits an improved SNR and important upgrades :
e Dark calibration has normalized background intensity to nearly zero.

e Gradient-based filtering proved effective in mitigating the high-energy particle speck-
les due to harsh radiation environment. By selectively targeting high-frequency im-
pulse noise without applying a global smoothing kernel, atmospheric and stellar fea-

tures are preserved.

e Lens correction and despinning steps have aligned the image features, merging the

rotation-induced duplicates into one single object.

While the core features of the atmosphere are now distinct, residual artifacts remain,
specifically at the periphery of the frame. The left-hand side of the image exhibits edge-

effects from the despinning. These artifacts are attributed to the lack of overlapping data

Page 22 of

CHAPTER 3. IMAGE PROCESSING 23

for interpolation at the image border. Some vignetting is still present in the top right
corner.

Despite these minor localized issues, the central region of interest is calibrated and

geometrically corrected, rendering the dataset suitable for the intended scientific analysis.

Figure 3.15: Pre & Post-Processing

Page 23 of

Chapter 4

Horizon Detection

4.1 Problem statement & Motivation

This chapter investigates the feasibility of extracting Jupiter’s horizon purely based
on the dataset. Combined with star mapping, the spacecraft’s position may be recovered.

Accurate detection of the planetary horizon is a required for this 2 purposes :
e Optical navigation
e Atmospheric investigation

Fitting a curve to such partial data presents a mathematical challenge. Traditional
algebraic methods, such as the standard least-squares fit, are known to be statistically
inconsistent when applied to short arcs. They underestimate the curvature radius, leading
to substantial errors in estimating the planet’s center and the spacecraft’s relative position.

The motivation for this study is to implement and validate a robust fitting algorithm

capable of overcoming these limitations.

4.2 Gradient-based Edge Tracking

The goal of this section is to extract Jupiter’s horizon purely from the dataset, inde-
pendently of trajectory kernels. In an ideal case, the horizon is defined as the set of points
where the intensity gradient is maximized. Standard edge detection methods, such as the

Canny Detector, prove unsuitable for the ASC images. Due to the faintness of the limb

24

CHAPTER 4. HORIZON DETECTION 25

(thus low SNR), these methods misidentify high contrast features such as stars, auroras
and atmospheric haze as part of the horizon.

To overcome this limitation, a custom algorithm was made just for this purpose. Unlike
global edge detectors, this algorithm enforces spatial continuity, tracking the horizon across
adjacent columns to reject isolated noise. While generally robust, the method remains
sensitive to high-intensity transient features, such as auroras, which can intersect the limb

and bias the method. The detection logic is implemented as follows:
e Scanning: Iterate through columns j.
e Gradient Computation: Calculate the vertical gradient vector VI; for the column.

e Thresholding: Calculate an adaptive threshold T = p; + k- 0, where p1; and o; are

the mean and standard deviation of the gradients in column j.

e Peak Finding: If a gradient VI; ; > Tj is found, verify it is the local maximum within
a window [¢ — 3,7+ 3]. This step ensures the data is continuous. Update the horizon

row R; = 1.

e Zero-Order Hold: If no gradient in the window exceeds 717}, the algorithm maintains

the previous horizon row: R; = R;_1, assuming the limb has not moved.

This method does not work as is on the last pair of images [2.5] The detected "horizon"
is of course the separation between the bright and dark regions, even though in reality it’s
an effect of sunlight scattering. These regions need to be explicitly masked out for the

algorithm to work.

4.3 Circle Fitting Method

The edge tracking yielded a set of vaguely connected points. The goal is now to fit a
smooth curve that approximates best this discontinuous line.
4.3.1 Validity of local circle approximation

Jupiter is an oblate spheroid, with a semi-major axis (equatorial radius) and semi-

minor axis (polar radius) measuring respectively 71492km and 66854km. These values

Page 25 of

CHAPTER 4. HORIZON DETECTION 26

correspond to the point of 1 bar of pressure. This gives a flattening ratio of :

a—>b
a

f= = 6.49%

This makes Jupiter the second most flattened planet in the Solar System after Saturn,
approximating it as a sphere would yield a non-negligible error.

However, the spacecraft is looking only at an arc of ~ 16° of Jupiter (data derived from
SPICE). A simulation was performed to evaluate whether a local spherical approximation
is valid (see . The outcome shows that the curvature of the limb within the narrow
FOV is indistinguishable from a spherical arc. The simulation indicated that fitting a circle
to the true ellipsoid segment yielded a radial deviation of 12.68 km, which is less than the
spatial resolution of a single pixel. An important distinction is that the radius of the fitted
circle is not the radius of Jupiter, but rather a local radius of curvature.

In conclusion, fitting a circle rather than an ellipse is valid given the narrow view angle.

Local Limb Approximation

«10% Planet view «10% Fitted Radius: 72837 km
6 \
4
2
0 L
-2
-4
-6
] ._ 5.4 — o
-8 Jupiter Ellipsoid True Ellipsoid Limb
Observed Limb 53 == == Locally Fitted Circle
-5 0 5 3 3.5 4
«10* X (km) x10*

Figure 4.1: Simulation of Jupiter’s ellipsoid and locally fit circle

4.3.2 Algorithm selection and validation

Fitting a circle to a set of 2D points is a common problem in image analysis. The

most classic approach is performing Kéasa’s fit. It is a simple least-square problem where

Page 26 of

CHAPTER 4. HORIZON DETECTION 27

the squared distance between the estimated circle and the set of points is minimized. It
performs well if the set of points is at least half a circle. It tends to be heavily biased
towards smaller circles when the set is a short arc, which is precisely the case for Juno’s
dataset.

For this study’s purpose, the most accurate method is a Hyperaccurate (Hyper) al-
gebraic circle fit proposed by Al-Sharadqah and Chernov [12]. This method minimizes
the algebraic error for the general circle equation defined by the parameter vector A =
(A,B,C,D)T:

Alx* +y*) + Bz +Cy+D =0

The method seeks to minimize the mean square algebraic distances subject to a constraint
that prevents the trivial solution A = 0. This is formulated as a generalized eigenvalue
problem:

MA =nNA

where M is the matrix of data moments, 7 is the eigenvalue, and N is the constraint

matrix, which for centered data is defined as:

8 0 0 2

0 1 0 0
N =

0 0 1 0

2 0 0 0

where Z is the mean of z = x? 4+ y?. By selecting the eigenvector corresponding to the
smallest positive eigenvalue, this constraint neutralizes the geometric bias to the order of
O(n~2), ensuring a stable estimation of the radius even when the visible horizon represents
a short limb. Algorithm implemented in C+-+ with use of Al tools.

Unsurprisingly, the Hyper method outperforms the basic least-square algorithm (see
for more details). Due to the short visible limb and therefore large circles, the uncertainty
on the radius is significant. The radii yielded by Kasa’s and Hyper methods are respectively
1141 and 2248 pixels, which is about 100% difference. This was expected, as the first one

is biased towards shorter circles. Still, the efficiency of any circle fitting method is limited

Page 27 of

CHAPTER 4. HORIZON DETECTION 28

Figure 4.2: Red discontinuous data points show the output of edge-tracking. Blue line is
Kasa’s fit. Yellow line is Hyper fit. Image gained x6.

by the quality of the edge tracking algorithm, and ultimately the data itself.

4.4 Comparison with SPICE output

Only by specifying the exact time of the image capture, the SPICE-based program
computes the exact location and field of view of the camera. It can then represent where
the 1-bar planet edge is on the image without even analyzing it. This gives a baseline for
comparing horizon detection algorithms.

The evaluation metrics for both methods is the error area (total number of mismatched

pixels) and the deviation from the radius estimate.

Algorithm Error Area (px) | Radius (px) (% error)
SPICE (kernel data) 0 2458.16 (+0%)
Kasa 7937 1141.39 (-54%)
Hyper 7261 9248.52 (-8%)

The Hyper fit outperforms the least-square in both metrics. The Kéasa fit exhibits a
massive bias towards smaller circles, underestimating the radius by 54%. Conversely, the
Hyper fit maintains the curve shape, recovering the radius with an 8% deviation despite
processing only a 16° arc.

However, a persistent error area of approximately 7,000 pixels remains for both meth-
ods. This discrepancy is not algorithmic but physical. The edge-tracking detects the limb
based on the strongest gradient. This corresponds to high-altitude stratosphere, scattered

sunlight, auroral emissions, rather than the 1-bar pressure level defined by the SPICE

Page 28 of

CHAPTER 4. HORIZON DETECTION 29

Figure 4.3: Red area represents the 1-bar planet edge extracted from SPICE. Blue line is
Kasa’s fit. Yellow line is Hyper fit. Image gained x6.

model. As a consequence, the visible limb detected by the camera is offset from the phys-

ical limb provided by the kernels.

4.5 Conclusions

The investigation of horizon detection on Juno images reveals the discrepancies between
physical reality and optical observations. A horizon in a planetary image is not a binary
boundary but a continuous gradient of atmospheric scattering, especially when observed
from close. While SPICE kernels provide an exact mathematical model of the 1-bar edge,
the camera observes the cloud tops and stratospheric hazes. Consequently, any image-
based edge detection will inherently deviate from the kernel data. This atmospheric offset
is a physical reality of the dataset, not a failure of the fitting algorithm.

For scientific analysis where the spacecraft’s trajectory is well-defined, SPICE kernels
should be the primary source for geometry. Image-based horizon detection should be re-
served for scenarios where the spacecraft position is the unknown variable (e.g., autonomous
navigation). In such cases, the algorithm must combine the Hyper fit with an atmospheric

model to account for the offset between the visible atmosphere and the 1-bar edge.

Page 29 of

Chapter 5

Star Mapping

The JUNO images contain a limited number of background stars that appear as com-
pact intensity ’blobs’, distributed over a small number of pixels. By computing the center-
of-mass for each blob, every star can be reduced to a single point vector in space.

Using these vectors, the relative spatial configuration of these stars can be determined.
This set can then be compared to the relative angular separations of stars listed in an
existing celestial catalogue. Once the correct mapping between the image - catalogue is
found, the orientation of the star set with respect to the image plane can be computed.

From this information, the sensor attitude can be determined accurately. Since the
sensor is fixed on the spacecraft, this directly yields the spacecraft orientation in inertial

space.

5.1 Star Detection

In the ASC images, stars appear with strongly varying intensities. On the one hand, a
small number of stars are recorded as highly concentrated, near-saturated intensity blobs.
These starts are clearly distinguishable from the background, and can be detected reliably
by applying a high absolute intensity threshold. On the other hand, the majority of stars
are significantly fainter and closer to the noise floor, which makes them way harder to
detect. To attempt to detect both groups of stars, a hybrid approach is implemented in

star_tracker.py:

30

CHAPTER 5. STAR MAPPING 31

5.1.1 Dual mask construction

Let I(x,y) be the grayscale image (after denoising, see Chapter . A binary detection
mask is formed as

Mﬁnal - Msat V Mfaint7 <5~1)

where Mg, flags saturated /near-saturated pixels and M, targets small-amplitude point
sources.

(1) Saturated blobs. Saturated or near-saturated stars are detected directly from the
raw intensity image using a fixed saturation threshold, ensuring robust localisation of the

brightest point sources. A saturation threshold Tg,t is applied directly on I:
MS&t(J;?y) = 1{1(907?;) > Tsat}- (52)

This preserves large bright stars even when adaptive statistics (mean/std) are dominated
by Jupiter glow or background gradients.

(2) Faint stars via background subtraction. In parallel, faint stars are detected
through background subtraction followed by adaptive thresholding, which enhances small-
amplitude point sources while remaining locally robust to background variations. A smooth
background estimate B(z,y) is computed with a large median filter kernel (e.g. 61 x 61 in

our default preset):
B = MedianFilter([, kpg), I'(z,y) = max(I(x,y) — B(z,y),0). (5.3)

Optionally, I’ is normalized to [0,1] by its maximum. An adaptive threshold is then

computed using the global mean and standard deviation:
T =p(I")+ ao(l'), (5.4)

where « is the threshold_multiplier (e.g. o &~ 1.4 in the default settings). The faint-star

mask is

Meaint (2, y) = 1{I'(x,y) > T}. (5.5)

Page 31 of

CHAPTER 5. STAR MAPPING 32

Optionally, a morphological opening removes isolated pixels and small artifacts.

Figure 5.1: (Left) Input frame used for star detection. (Right) Saturated mask

5.1.2 Centroid extraction

Connected components are extracted from Mpg,,. For each connected component €2,

we compute:

o its area A = || (used to reject oversized artifacts), and
e an intensity-weighted centroid (Z, §) using the original (non-binary) image intensities.
Let w(z,y) = I(x,y) for (z,y) € Q. The weighted centroid is:

T wlx, = w(zx,
3= Z(m,y)eQ (y), = Z(yenl¥ (y) (5.6)
Z(I7y)€9w(x’y> Z(x,y)eﬁw(way)

The sum > w(z,y) is used as a flux proxy to rank detections; the pipeline keeps only the

top-N brightest detections (e.g. N = 400), because the subsequent matching is designed

around bright catalogue stars.

Page 32 of

CHAPTER 5. STAR MAPPING 33

Figure 5.2: (Left) Mask-subtracted image Mg,t. (Right) Detected star candidates

Figure 5.3: Detected star candidates overlaid on the image. Each blob is reduced to a
subpixel centroid via Eq. (5.6).

5.2 Star Catalogue

5.2.1 Catalogue selection

A practical limitation is that not every catalogue is ideal across the full magnitude

range of interest:

e Bright stars: a HIP /Bright-Star-Catalogue [13] style list is reliable for very bright

objects (roughly mag € [—2,4]).

e Fainter stars: The Gaia DR3 catalogue [14] provides dense coverage and accurate
astrometry, but a given curated export may miss some of the extremely bright stars

or require special handling of identifiers.

Therefore we use a mixed approach: HIP-based entries for the brightest stars, and Gaia
entries beyond that range, with a crossmatch/name-lookup layer for consistent labeling

(HIP numbers, Gaia IDs, and friendly names/IAU where available).

5.2.2 Negligibility of Parallax effects

Catalogue coordinates are provided as inertial directions from the Solar System barycen-
tric perspective (J2000/ICRF). For star-tracking, we treat stars as fixed points on the

celestial sphere. The error from observing from Jupiter instead of Earth is dominated by

Page 33 of

CHAPTER 5. STAR MAPPING 34

stellar parallax:

B
eparallax ~ 57 (57)

where B is the observer baseline (Earth—Jupiter distance, order of a few AU) and D is the
star distance (typically many parsecs, i.e., light-years). Even for very nearby stars, the
resulting angular difference is on the order of arcseconds, which is negligible compared to
the matching tolerance used in our robust solver (order of 10! degrees). Hence, using the

same inertial star directions is sufficiently accurate for this study.

5.2.3 Inertial vector conversion

Each catalogue star is represented by its equatorial coordinates («,d) in radians (RA,

Dec). The corresponding inertial unit vector k is:

cosd cos o
k(o,d) = |cosd sina| > k| = 1. (5.8)

sin

In the code, these are stored as vec_inertial per catalogue entry and are the fundamental

primitives used for angular comparisons and attitude estimation.

5.3 Attitude Estimation

5.3.1 Pattern ambiguity

If we only consider relative geometry between stars, the key invariant is the angle
between two lines of sight:

6;; = arccos <uiTuj> , (5.9)

where u; and u; are unit direction vectors.

With three stars, there are three pairwise angles; with four stars, there are six. In
a large catalogue (thousands to tens of thousands of stars), a triple of angles may still
occur for multiple different triples, especially under measurement noise. Adding a fourth

star provides additional constraints (six angles total), and the probability of accidental

Page 34 of

CHAPTER 5. STAR MAPPING 35

collisions becomes extremely small.

However, even if the identity of the stars is known, the attitude is still not obtained from
angles alone: the same 4-star shape can appear at different locations on the sensor, which
corresponds to different boresight directions. In other words, inter-star angles constrain
the pattern but not the absolute pointing. The absolute pixel locations must be mapped to
absolute rays in the camera frame, and these rays must be aligned with inertial catalogue
vectors.

In our implementation, this disambiguation is achieved by (i) generating hypothe-
ses from angle-consistent pairs, and (ii) validating them against many additional stars
(RANSAC inliers). This plays the same role as “adding the 4th star and beyond™ it

collapses the remaining ambiguity to a unique attitude.

5.3.2 Camera ray projection

For each detected centroid (#,9) (in image pixel coordinates), we compute a unit ray
Veam Using a pinhole camera model with the ASC intrinsics. Let (fz, fy) be focal lengths

in pixels and (¢, ¢,) the principal point. Then:

T —cCy 7 —cy

) Yn = —)
f:c " fy

(5.10)

Ipn =

where the minus sign accounts for the image y-axis pointing downward while the camera
frame convention uses +y upward.

A small radial distortion term is optionally applied using a coefficient «:

= (1 — rr?) . (5.11)

(5.12)

Note on resizing. Since figures in this report may be exported /rescaled, the code rescales

Page 35 of

CHAPTER 5. STAR MAPPING 36

(fzs fy, €z, cy) by the ratio of the current image dimensions to the hardware sensor resolu-

tion before applying Eq. (5.10)).

5.3.3 Fast candidate search

To efficiently propose catalogue correspondences, angles between pairs of the N bright-

est catalogue stars are precomputed:
04" = arccos <kl—kb> . (5.13)

In classical star trackers, Mortari’s Pyramid star pattern recognition algorithm [15]
introduces the so-called K-vector technique to accelerate this search. All catalogue pair-
angles are stored in a single sorted array. A small auxiliary index (the K-vector) then maps
a range query

Hobs +e

to (approximately) the corresponding lower and upper indices in that sorted list. This
converts an exhaustive scan over all pairs into a fast range lookup over a short contiguous
interval.

A discretized equivalent is used here: the catalogue angles are grouped into bins of

width A6 (e.g. 0.01°), yielding a dictionary
bin — {(a,b, 65)}.

Given an observed detection pair-angle, only the corresponding bin (and a small neigh-
borhood of adjacent bins to account for measurement noise) is queried. This reduces the
candidate set by several orders of magnitude, while preserving the same core objective as a
K-vector range search: limiting hypothesis generation to catalogue pairs with compatible

inter-star angles.

Page 36 of

CHAPTER 5. STAR MAPPING 37

5.3.4 Robust solver (RANSAC/Wahba)

Let {v;}}, be the detected camera rays (Eq. (5.12)) and {k; le the catalogue inertial

vectors (Eq. (5.8). We seek the rotation matrix R € SO(3) such that
ki) = Ry, (5.14)

where 7(7) is the catalogue index matched to detection i.

k (catalogue)

Image plane
Zin

.EQV }7) pinhole
+ca) ~=~-{mapping

v, Xn

Camera frame Inertial frame

Figure 5.4: From Image Plane Coordinates to Inertial Frame Vectors

(1) RANSAC hypothesis generation from one angle-consistent pair. We precom-
pute all detection-pair angles Gdjet via Eq. (5.9). Each RANSAC iteration:

1,

edet

1. randomly selects a detection pair (7, j) with measured i

2. retrieves candidate catalogue pairs (a, b) whose 653" lies within the corresponding bin

neighborhood,

3. builds a candidate attitude R using the TRIAD method from the two vector corre-

spondences.

TRIAD [16] construction. Given two non-collinear camera rays (vi,vz) and their

inertial matches (ki, ko), TRIAD forms orthonormal bases:

X
t1=vy, to= M v2 ty =t X to, (5.15)

v x val|”

Page 37 of

CHAPTER 5. STAR MAPPING 38

and similarly (s1,s2,s3) from (ki, ko). Writing
Ceam = [t1 t2 t3], Cin = [s1 82 s3],
the attitude mapping camera — inertial is

R = C;, C/, (5.16)

cam*

(2) Inlier finding. For a candidate R, every detected ray is projected into the inertial

frame:

We assign it to the catalogue star with maximum dot product:

j (i) = arg max k;-rl;i, (5.18)

and declare an inlier if the angular error is below a tolerance e:
arccos(kjt(i)ko <e. (5.19)

The hypothesis with the highest inlier count is kept.

(3) Wahba [17] refinement using Davenport’s Q-method [I8]. Once a consensus
set of inliers is found, the attitude is refined by solving Wahba’s problem:
R* =arg min w; ka(i) — RviH2, (5.20)

RESO(3)

i€

where 7 is the inlier set and w; are weights (unity in our default configuration). The
implementation uses Davenport’s Q-method to obtain the optimal rotation via a quaternion

eigenproblem, then converts the quaternion to R*.

Page 38 of

CHAPTER 5. STAR MAPPING 39

5.3.5 Boresight calculation

The final output of the attitude solver is R mapping camera-frame rays to inertial

directions. The camera boresight is the camera z-axis:

0 x
bcam = (0], bin = Rbcam = |yl - (521)
1 z

The corresponding pointing angles are:

0 = arcsin(z), a = atan2(y, x), (5.22)

with « wrapped to [0,27) and both angles reported in degrees. This yields the final

RA /Dec of the optical axis for the considered frame.

5.3.6 Mapping results

After the refined attitude is obtained, every detection is matched again using the
nearest-by-dot criterion (Eq. (5.18))) within a slightly looser angular threshold (e.g. 0.3°).
The image (Fig. is then annotated with detected centroids, matches star names/iden-

tifiers (HIP / Gaia / friendly name when available) and the estimated boresight RA /Dec.

Pointing: RA=253.941 deg Dec=—34.877 deg

Figure 5.5: Final star mapping result. Matched stars are labeled in the image plane, and
the estimated camera pointing (v, d) is printed.

Page 39 of

Chapter 6

Applications

6.1 Juno’s position vector

As defined in the research objectives (Chapter , the final goal of this study was to
combine the limb geometry and the star-derived attitude to recover an image-constrained
spacecraft position estimate. Ideally, this would close the loop on the geometric recon-
struction.

However, the investigation in Chapter [d] demonstrated that the optical horizon detected
in the ASC images does not correspond to the physical 1-bar reference surface provided
by the SPICE kernels. Instead, it represents a diffuse boundary of stratospheric haze and
scattered sunlight, introducing a systematic offset that cannot be fully corrected without
a complex atmospheric radiative transfer model.

Consequently, applying the navigation algorithm to this specific dataset yields a biased
position fix. Therefore, the following subsection focuses on the theoretical derivation
of the horizon navigation method. This explains the mathematical logic intended to be
applied, demonstrating how the position vector is constructed in a scenario where the

visual limb is detected reliably.

40

CHAPTER 6. APPLICATIONS 41

6.1.1 Constructing the position vector
Limb pixels to camera-frame rays

Let (x;,y;) be pixel coordinates sampled from the detected horizon curve, where i =
1,..., N indexes valid limb points. Because the images are already lens-corrected and
despun (Chapter [3)), a pinhole model is sufficient for ray construction.

Using the camera intrinsics (f, fy, ¢z, ¢y) in pixels, each pixel is mapped to a normalized
direction in the camera frame:

Ty —Cg Yi — Cy

Yni = — fy s (6.1)

where the minus sign accounts for the downward image y-axis convention. The correspond-

ing (unnormalized) ray is

Tn,i
. Vi
1

Camera intrinsics. For the JUNO ASC camera, the focal length and principal point are

known from calibration and are used directly. The focal lengths in pixel units are given by

fo=F— o= (6.3)

with f = 20006 pm and (Dx,Dy) = (8.6, 8.3) ym. The principal point is fixed at
(€z,cy) = (383, 257) pixels.

Camera rays to inertial rays

Let Ry ¢ be the rotation matrix from camera frame to inertial frame estimated by

the star mapping solver (Chapter . Each limb ray becomes an inertial unit vector:

u; = R[%C Vi, HuZH = 1. (64)

Page 41 of

CHAPTER 6. APPLICATIONS 42

Spherical horizon constraint (tangent-ray cone)

Assume Jupiter is locally approximated as a sphere of radius R (as motivated in Chap-
ter . Let r be the unknown spacecraft position vector in a Jupiter-centered inertial frame
(origin at Jupiter’s center, axes aligned with J2000/ICRF). A limb ray from the spacecraft

has the parametric form:

pi(s) =r+ su,, s> 0. (6.5)

Tangency to the sphere ||p|| = R occurs when the quadratic in s has zero discriminant.

Expanding ||r + su;|> = R? yields:

s>+ 2s(r'w) + (r)|> = R*) =o. (6.6)

The tangency condition is:

(r'w)? = |Ir||> — R?, i=1,...,N. (6.7)

This implies all limb rays lie on a cone with axis r, i.e. the dot product with the axis

direction is (ideally) constant over all i (see Fig. [6.1]).

Figure 6.1: Spherical horizon tangent geometry

Page 42 of

CHAPTER 6. APPLICATIONS 43

Cone-axis fit and range recovery

Define the unit position direction:

r
= o = 1. (6.8)

Using Eq. (6.7) and r = pn with p = ||r||, one obtains:

(pn"w)?=p*—R?> = (n'w)?=1- <Ij)2 (6.9)

Hence n ' u; should be (up to sign) constant across limb rays. Because the observed limb

is only a short arc, we estimate n and the constant ¢ by least squares:

N

min (n"u; —¢)?. (6.10)
[nf=1,c i=1

Remark. Because the detected horizon typically covers only a short arc, the cone-axis
estimation in Eq. can become weakly constrained. In direction space, the limb
rays {u;} occupy only a small segment of the cone-sphere intersection, which limits the
information available to determine the cone axis. As a result, the smallest-eigenvalue
eigenvector of the covariance-like matrix C may become ill-conditioned [19] and sensitive
to outliers in the limb points and small biases in the attitude solution.

For a given n, the optimal cis ¢ = % > n'u;. Substituting this back shows Eq.

T

minimizes the variance of the projections n'wu;. Writing p = % >, u; and the covariance-

like matrix

C= Z(Ui —p)(wi—p)’, (6.11)

the minimizing n is the eigenvector of C associated with its smallest eigenvalue. This is
equivalent to performing Principal Component Analysis (PCA) on the set of ray vectors

and selecting the component of minimum variance [20, Ch. 3]. We then set

1
=% Z (6.12)
For a valid configuration, u; points approximately toward Jupiter, while n points from

Page 43 of

CHAPTER 6. APPLICATIONS 44

Jupiter’s center to the spacecraft; therefore c is expected to be negative. If the eigenvector
sign yields ¢ > 0, we flip n < —n.

Finally, combining ¢ = n' u; &~ — cos 8 with the geometric relation sin f = R/p gives:

R

Equation (6.13)) yields the full Jupiter-centered position vector in inertial coordinates and
follows directly from the cone geometry introduced in Fig. [6.1]
Optional ellipsoid refinement

If the spherical approximation is insufficient, Jupiter can be represented as an oblate
spheroid (semi-major axis a, semi-minor axis b). In a Jupiter-centered frame aligned with

the ellipsoid axes, the surface is described by

1 1 1

T .

:1 = - . '14
x'Qx=1, Q dlag(GQ,ag,b> (6.14)

Tangency of the line x(s) = r + su to the quadric is again obtained by a zero-discriminant
condition, yielding

(u'Qr)?=(u'Qu) (r'Qr—1). (6.15)

A least-squares solve over Eq. (6.15) can be used to refine r, using the spherical solution
from Eq. (6.13) as initialization. In this work, the ellipsoidal model is employed only as a

refinement step and not as a primary estimator.

6.1.2 Consistency checks
Tangency residuals

After estimating r, the spherical tangency constraint is evaluated per limb ray using

e = (r'w)? — (||rl* - B?). (6.16)

Page 44 of

CHAPTER 6. APPLICATIONS 45

In the ideal noiseless model, e; = 0. In practice, the distribution of {e;} provides an

immediate diagnostic of:
e horizon detection quality (outliers from aurora, haze, or intensity gradient artifacts),
e residual camera modeling errors (e.g. imperfect distortion correction or intrinsics),
e attitude error from star mapping (rotation bias in Ry ¢),
e physical limb offsets relative to the chosen reference radius R.

The spherical form of Eq. (6.16]) is intentionally retained, as it yields a uniform and radius-

independent consistency metric.

Cone projection dispersion

Because the cone model predicts n'u; & ¢, the standard deviation

N
1 2
E Ty —
o= | % 3 (n'u; —¢) (6.17)

should remain small for a consistent solution. This metric is independent of the assumed

planetary radius and isolates purely angular consistency.

Inter-frame stability

The dataset contains image pairs separated by 500 ms. Applying the full pipeline to
both frames of a pair should yield nearly identical position vectors r, with deviations
consistent with the spacecraft displacement over 0.5s. Large discrepancies indicate that
the detected horizon points are not sampling the same physical limb (e.g., contamination
by the bright scattering boundary in Fig. , rather than variations in camera intrinsics,

which are fixed by calibration.

6.1.3 Transforming to Jupiter-centric coordinates

The position vector r from Eq. (6.13)) is expressed in a Jupiter-centered inertial frame

aligned with J2000. For interpretation on the planet (latitude and longitude), or for com-

Page 45 of

CHAPTER 6. APPLICATIONS 46

parison with body-fixed products, it is often desirable to express this vector in a Jupiter
body-fixed frame.
Let R (t) denote the rotation from inertial J2000 to the Jupiter-fixed frame at epoch

t. The transformation is given by

I‘J(t) = RJ(_](t) ryr. (6.18)

This transformation is applied solely for interpretation and comparison; all estimation
steps are performed in the inertial frame.

From r; = [z y 2] ", the planetocentric longitude and latitude are obtained as

A = atan2(y, z), 0= arctan?(z, Va2 + y2) , (6.19)

with A wrapped to [0, 27).

6.2 Atmospheric Investigation

6.2.1 Spatial resolution

The first step before any atmospheric analysis is to convert pixels into physical kilo-
meters. This scaling factor, or spatial resolution S, is determined by the specific viewing

geometry and intrinsic camera parameters. Using the principle of similar triangles (see

sketch ,

(6.20)

=T

5
p
Where:

e D is the slant range to the limb provided by SPICE kernels (60,621 km for this

observation).
e p is the width of a pixel (8.6 pm).

e f is the focal length (20,006 pm).

Page 46 of

CHAPTER 6. APPLICATIONS 47

distance from horizon focal length

D f

P

pixel sensor

planet view

Figure 6.2: Schematic illustrating the projection of sensor pixel onto the target plane.

Substituting the value gives :

D-p 60621km - 8.6m

S — -
f 20006 4m

= 26.06km /px

It is important to note that this value is valid strictly at the limb tangent point. For any
features projected below the horizon (on the planetary disk), the distance D decreases

slightly, resulting in a finer spatial resolution (smaller km/px value).

6.2.2 Validation of thermosphere detection

The atmospheric region extending above the limb is identified as the thermosphere, the
upper boundary layer that separates Jupiter’s envelope from the vacuum. This layer begins
approximately 350 km above the 1-bar level [21]. Unlike the underlying troposphere, which
is governed by solar heating and convection, the thermosphere is defined by a dramatic
rise in temperature and intense interaction with the Jovian magnetosphere.

The defining characteristic of this layer is its immense extent, driven by temperatures
that rise dramatically with altitude, ranging from 160 K to 900 K. This extreme thermal
expansion is fueled by high-energy inputs: the layer absorbs solar ultraviolet radiation and

is bombarded by precipitating charged particles from the magnetosphere. This particle

Page 47 of

CHAPTER 6. APPLICATIONS 48

precipitation is the primary driver of Jupiter’s powerful auroral emissions. The detection
of these auroral signatures in the data confirms that the observed limb profile corresponds

to this active upper-atmospheric layer.

Scale Height Correlation

A critical parameter for characterizing this atmospheric layer is the scale height (H),
which represents the vertical distance over which the atmospheric density decreases by a
factor of e. In a hydrostatic atmosphere, it is defined as

T
i

H (6.21)

where k is the Boltzmann constant, T is the kinetic temperature, m is the mean molecular
mass, and ¢ is the local gravitational acceleration. Due to very high temperatures, the
atmosphere expands significantly, resulting in scale heights that are orders of magnitude
larger than those found in the cloud decks below (H ~ 27 km at 1-bar level).
To analyze the intensity profile, radial line scans were performed on the cleaned data
(cf. [6.3). As discussed in Chapter[4] the horizon is derived from SPICE kernels, eliminating
approximation errors. These line scans are averaged and fit to an exponential curve (cf.
of the following form :
I(r) = Ipe /" (6.22)

The fitting provides an estimated scale height H of 4.8 pixels, translating to ~ 125 km

using the spatial resolution derived earlier.

Figure 6.3: Radial line scans of Jovian atmosphere. Red lines are omitted because aurora
interferes with the signal. Image gained x6.

Page 48 of

CHAPTER 6. APPLICATIONS 49

This value correlates strongly with theoretical predictions, driven primarily by the
thermal structure of the layer. As defined in equation [6.2I] the scale height is directly
proportional to the temperature (H o T'). While the troposphere is cold (130 K), Yelle &
Miller [21] describe the thermosphere as a region of extreme heating, where temperatures
rise to between 800 K and 1000 K. Consequently, the scale height is effectively multiplied
by a factor of roughly 5 to 7 relative to the lower atmosphere, where the scale height is 27
km. The derived value of 125 km is consistent with these high temperatures, confirming
that the exponential decay detected in the imagery corresponds to the hot, expanded

thermosphere.

20 Atmospheric Profile

Observed Intensity
Exp Fit (H=4.8 px)

15

Intensity
S

0 20 40 60 80 100
Altitude (pixels from horizon)

Figure 6.4: Averaged radial line scan starting from 1 bar horizon

Page 49 of

Chapter 7

Discussion and Conclusions

7.1 Discussion

This study investigated whether the Juno ASC, originally designed as a navigation star
tracker, can be repurposed into a scientifically useful imager for atmospheric inspection and
as a supporting sensor for optical navigation. The results show that meaningful information
can be extracted, but only when a dedicated processing chain (briefly summarized by
Figure designed for sensor bias, radiation contamination, and rotation-induced smear

is applied.

7.1.1 What works best for this Juno dataset

Radiometric calibration and structured-bias suppression Dark-frame subtraction
combined with optional column-bias removal removes sensor-induced background bias. In
this dataset, the large fraction of deep-space pixels makes a column-median estimator

effective for suppressing column-correlated residuals.

Radiation mitigation Radiation hits appear as compact, high-gradient impulses that
must be removed without attenuating the star point-spread function or the faint limb
gradient. Global smoothing reduces speckles but degrades both centroiding and edge lo-
calization. The gradient-based switching median filter provides the most suitable trade-off

by selectively suppressing impulse artifacts while preserving broader structures. The effect

50

CHAPTER 7. DISCUSSION AND CONCLUSIONS 51

of this step is illustrated by the reduction of radiation speckles between the intermediate

frames in Fig.

Robust star mapping for inertial attitude recovery Despite the limited number
of detectable background stars and strong intensity variation across the frame, the star
mapping pipeline succesfully recovers the camera-to-inertial rotation. A hybrid detection
strategy increases the usable star set, while the robust matching stage resolves catalogue
ambiguities by validating hypotheses against many additional detections (RANSAC in-
liers). After a consistent correspondence set is found, Wahba refinement directly provides

the spacecraft orientation in inertial space.

Reconstruction through despinning and lens correction The 125 ms delay be-
tween odd and even readout fields corresponds to a measurable angular rotation, making
raw frames inconsistent with a single pinhole camera model. Rotation-compensated de-
spinning restores a coherent capture. While lens distortion is visually subtle, it becomes

relevant when pixel-level errors are converted to physical distance at the limb.

Horizon estimation on short arcs Because the limb occupies only a short arc in a 16°
field of view, standard algebraic least-squares circle fitting (Késa) becomes strongly biased.
The Hyperaccurate fit is more stable for this regime and yields a radius estimate that is
consistent with SPICE to within the reported residual level. This improves geometric
extraction from the image, but does not remove the systematic mismatch that originates

from the horizon definition.

7.1.2 Limitations and sources of error

Figure provides an overview of the full processing pipeline: from the raw image (1)
through despinning (2) and denoising (3) to an image suitable for feature extraction. The
final outputs illustrate two parallel branches, star detection and catalogue-based attitude

annotation (4) and horizon extraction via limb detection and geometric overlay (5).

Page 51 of

CHAPTER 7. DISCUSSION AND CONCLUSIONS 52

Horizon detection compared to SPICE reference The dominant discrepancy in
the horizon comparison is physical rather than numerical. The ASC detects a radiometric
transition shaped by scattering and haze at altitudes above the 1-bar level used by SPICE.
Consequently, horizon-based optical navigation inherits a systematic range bias unless an

atmospheric offset model (or equivalent correction) is introduced.

Dataset scope Conclusions are based on a limited observation set, restricting validation

across illumination conditions radiation variability.

Star detection and matching limitations Star mapping performance is constrained
by the photon-limited regime and the presence of strong stray light gradients near the
Jovian limb. Faint stars near the noise floor can be missed or fragmented into spurious
detections, while radiation residuals can introduce false candidates. Although the robust
solver mitigates these effects through inlier screening, frames with very low star counts or
heavy contamination reduce attitude confidence and can increase sensitivity to centroiding

and catalog matching errors.

Onboard infeasibility Full-frame calibration, filtering, and dense remapping exceed the
#ASC processing constraints at 4 Hz, confining the complete reconstruction to ground-

based processing.

Page 52 of

CHAPTER 7. DISCUSSION AND CONCLUSIONS 53

Pointing: RA=253.964 deg Dec=-34.916 deg

Figure 7.1: From raw image to star detection and horizon extraction.

Page 53 of

CHAPTER 7. DISCUSSION AND CONCLUSIONS 54

7.2 Conclusions

7.2.1 Main findings

e A tailored image processing sequence can convert raw ASC frames into scientifically

interpretable imagery.

e The gradient-based switching median filter preserves both images features more ef-

fectively than global smoothing in this dataset.

e Hyperaccurate circle fitting provides a good estimate of the horizon line, but opti-
cal navigation accuracy is inherently limited by the data itself without additional

modeling.

e Robust star mapping (hybrid detection + RANSAC/Wahba refinement) yields a

stable camera-to-inertial attitude estimate from sparse star fields.

7.2.2 Recommendations for future work

1. Parameterize the atmospheric offset. Introduce Rery = R+ Ah or an intensity-based
limb model so that the radiometric-to-geometric discrepancy becomes an estimable

correction rather than a persistent bias.

2. Estimate the feasibility of removing heavy processing steps and still get a god accu-
racy on attitude determination for onboard attitude and, potentially, position deter-

mination.

Overall, the ASC images can be repurposed into a useful scientific and geometric
dataset, but the limiting factors are dominated by the little amount of available data,
sensor architecture, compute constraints (for the onboard attitude determination), and

challenges in interpreting the observed limb.

Page 54 of

Bibliography

1]

2]
3]

4]

[5]

(6]

7]

National Aeronautics and Space Administration. NASA’s Juno Mission to Remain
in Current Orbit at Jupiter, February 2017. News release (Release 17-018), Feb 17,
2017.

NASA Science. Juno, 2025. Mission overview page (page last updated Sep 03, 2025).
NASA Jet Propulsion Laboratory. Juno, 2025. JPL mission overview page.

Space Instrumentation Group. Advanced Stellar Compass JUNO Software Interface
Specification. Software Interface Specification JN-DTU-SP-3001, National Space In-
stitute, Technical University of Denmark, Kongens Lyngby, Denmark, 2024. Issue
1.6.

Matija Herceg, P. Jorgensen, J. Jgrgensen, and J. Connerney. Thermoelastic response
of the juno spacecraft’s solar array/magnetometer boom and its applicability to im-

proved magnetic field investigation. Earth and Space Science, 7, 11 2020.

Troelz Denver, Julia Sushkova, John L. Jgrgensen, Leonardo Ghizoni, Matija Herceg,
Christina Toldbo, Mathias Benn, Peter S. Jorgensen, René Fléron, J. E. P. Connerney,
Heidi N. Becker, and Scott J. Bolton. The Juno ASC as an energetic particle counter.
Space Science Reviews, 220(8):86, 2024.

Navigation and Ancillary Information Facility. Time Required Reading. https:
//naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/time.html. Accessed: 2025-

12-10.

95

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/time.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/time.html

BIBLIOGRAPHY 56

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Pieter G. van Dokkum. Cosmic-ray rejection by laplacian edge detection. Publications

of the Astronomical Society of the Pacific, 113(789):1420, nov 2001.

Olgierd Stankiewicz, Gauthier Lafruit, and Marek Domarnski. Chapter 1 - multiview
video: Acquisition, processing, compression, and virtual view rendering. In Rama
Chellappa and Sergios Theodoridis, editors, Academic Press Library in Signal Pro-

cessing, Volume 6, pages 32—-33. Academic Press, 2018.

Carlo Tomasi. Vector representation of rotations. Duke University, Computer Science

527 Lecture Notes, 2013. Accessed: 2025-11-20.
Vision Doctor. Optical errors - distortion, n.d.

A. Al-Sharadgah and N. Chernov. Error analysis for circle fitting algorithms. Flec-

tronic Journal of Statistics, 3:886-911, 2009.

European Space Agency. Hipparcos catalogues. https://www.cosmos.esa.int/web/

hipparcos/catalogues| 1997. ESA SP-1200.

European Space Agency. Gaia data release 3 (dr3) catalogue. https://www.cosmos.

esa.int/web/gaia/dr3| 2022. Gaia DR3.

Daniele Mortari, Malak A. Samaan, Christian Bruccoleri, and John L. Junkins. The

“pyramid” star pattern recognition algorithm. Navigation, 51(3):171-183, 2004.

Malcolm D Shuster and SD Oh. Three-axis attitude determination from vector obser-

vations. Journal of Guidance and Control, 4(1):70-77, 1981.

Grace Wahba. A least squares estimate of satellite attitude. SIAM review, 7(3):409-

409, 1965.

James R Wertz. Spacecraft attitude determination and control, volume 73. Springer

Science & Business Media, 1978.

Aurelie Bellemans, Tim De Troyer, Mark Runacres, and Chris Lacor. Basic Techniques
for Computer Simulations. Vrije Universiteit Brussel, 2023. Lecture notes, Faculty of

Engineering.

Page 56 of

https://www.cosmos.esa.int/web/hipparcos/catalogues
https://www.cosmos.esa.int/web/hipparcos/catalogues
https://www.cosmos.esa.int/web/gaia/dr3
https://www.cosmos.esa.int/web/gaia/dr3

BIBLIOGRAPHY o7

[20] Tue Herlau, Mikkel N. Schmidt, and Morten Mgrup. Introduction to Machine Learning
and Data Mining. Technical University of Denmark, 2023. Lecture notes, Fall 2023,

version 1.0.

[21] Roger V. Yelle and Steve Miller. Jupiter’s thermosphere and ionosphere. In Fran Bage-
nal, Timothy E. Dowling, and William B. McKinnon, editors, Jupiter: The Planet,
Satellites and Magnetosphere, chapter 9, pages 185-218. Cambridge University Press,
Cambridge, UK, 2004.

Page 57 of

Appendix A

Additional Material

A.1 Star recognition output from whole dataset

o8

APPENDIX A. ADDITIONAL MATERIAL 99

Pointing: RA=256.606 deg Dec=—34.747 deg Pointing: RA=255.133 deg Dec=—34.890 deg

054035128163866060 11

HIPSEE70
©H1P86670

HIP87073
QHiP87073

HIP87073
oHPeTo73

(a) Frame 1

Pointing: RA=255.320 deg Dec=—34.871 deg

(c) Frame 3 (d) Frame 4

Pointing: RA=255.544 deg Dec=—34.846 deg Pointing: RA=253.964 deg Dec=—34.916 deg

(e) Frame 5 (f) Frame 6

Figure A.1: Star-tracking results for six representative ASC frames.

Page 59 of

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

APPENDIX A. ADDITIONAL MATERIAL 60

A.2 Source Code

Note: The source code presented in this appendix was assembled, refactored, and
cleaned with the assistance of Al-based tools to improve code structure, readability, and
consistency across different scripts, while preserving the original algorithms and logic de-

signed by the authors.

A.2.1 Main script

#!/usr/bin/env python3
nnn
TotalCode: unified JUNO pipeline with all toggles + star tracker in

one file.

Includes:

- Despin (per-pixel rotation)

- Lens distortion correction

- Denoising (dark frame, flatten, spike, median/Gaussian)
- Column-median glow removal

- Fourier notch filtering

- Edge tracking, circle fits, limb profiles

- Star tracker (catalog loading, detection, attitude, annotation)

Use the feature toggles below to enable/disable each stage.

from __future__ import annotations

from dataclasses import dataclass, field
from pathlib import Path

from typing import Dict, Iterable, List, Optional, Sequence, Tuple

import cv2

import numpy as np

Page 60 of

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

APPENDIX A. ADDITIONAL MATERIAL

61

from PIL import Image

import star_tracker

APPLY_DESPIN = True
APPLY_LENS = False
APPLY_DENOISE = True
APPLY_FFT_NOTCH = False
APPLY_EDGE_TRACKING = True
APPLY_CIRCLE_FITS = True

APPLY_LIMB_PROFILES True

APPLY_RESIDUAL_GLOW False # column median subtract
APPLY_STAR_TRACKER = True
STAR_USE_DESPIN_MASK = False # 1if True, pass the despin overlap

mask into star tracker detection

SCIENCE_DIR = Path("/Users/vojtadeconinck/Downloads/
ImageAnalysis30300/JUNO_ DespinImages") / "ScienceCalibrated"

OUTPUT_DIR = Path("/Users/vojtadeconinck/Downloads/
ImageAnalysis30300/JUNO_ DespinImages") / "Combined"

MASK_OUTPUT_DIR = OUTPUT_DIR / "Masks"

STAR_CATALOG_PATH = Path("/Users/vojtadeconinck/Downloads/

ImageAnalysis30300/combined_stars.csv")

--- Camera / geometry constants

Page 61 of

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

APPENDIX A. ADDITIONAL MATERIAL

62

OMEGA = np.array ([-8.54302424e-05, -2.26443686e-04, -2.08965026¢
-01], dtype=np.float64)
OMEGA_FRAME = "spacecraft" # '"spacecraft" or "camera"

DELTA_T = 0.13 # seconds between odd and even fields

SC_TO_CHUD_MATRIX = np.array ([
[0.99995302, 0.00569167, 0.00784704],
[0.00383956, -0.97582589, 0.21851563],
[0.00890106, -0.21847523, -0.9758019],

D

EFL_MICRONS = 20_006.0

PIXEL_SIZE_X_MICRONS 8.6

PIXEL_SIZE_Y_MICRONS

8.3
PRINCIPAL_POINT = (383.0, 257.0) # (cx, cy)

SENSOR_SHAPE = (580, 752) # (H, W)

Lens distortion

LENS_KAPPA = 3.3e-8

@dataclass

class FlattenConfig:
mask_percentile: float = 95.0
dilate_kernel: int = 11

sigma: float = 40.0

column_correction: bool True
column_mask_percentile: float = 99.0

column_dilate: int = 5

Page 62 of

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

APPENDIX A. ADDITIONAL MATERIAL 63
@dataclass
class DenoiseConfig:
apply_dark_frame: bool = False
dark_frame_path: str | None = None
dark_frame: np.ndarray | None = field(default=None, repr=False)
apply_column_median: bool = False

apply_flatten: bool = True

flatten: FlattenConfig = field(default_factory=FlattenConfig)

spike_mode: str = "gradient" # "mean" or "gradient"
spike_neighborhood: int = 1
spike_threshold: float = 45.0

gradient_threshold: float = 45.0

median_kernel: int = 3
gaussian_kernel: int = 0
gaussian_sigma: float = 0.0

DENOISE_SETTINGS = DenoiseConfig(

apply_dark_frame=False,

dark_frame_path=str(Path("/Users/vojtadeconinck/Downloads/
ImageAnalysis30300/BlackRefImages/master_black.png")),

apply_column_median=False,

apply_flatten=True,

flatten=FlattenConfig(),

spike_mode="gradient",

spike_neighborhood=1,

spike_threshold=45.0,

gradient_threshold=45.0,

median_kernel=3,

gaussian_kernel=0,

Page 63 of

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

138

139

140

141

142

143

144

APPENDIX A. ADDITIONAL MATERIAL

64

gaussian_sigma=0.0,

--- Fourier notch default (legacy manual 1list)

MANUAL_NOTCHES = [
(75, 0),
(115, 0),
(155, 0),
(0, 40),
(0o, 80),

]

NOTCH_RADIUS = 25.0

def _load_grayscale(path: Path) -> np.ndarray:
arr = np.array(Image.open(path))
if arr.ndim != 2:
raise ValueError (f"{path} is_not,a,single-channel image.")

return arr

def _save_grayscale(data: np.ndarray, path: Path, dtype: np.dtype)
-> None:
info = np.iinfo(dtype)
clipped = np.clip(np.rint(data), info.min, info.max).astype(
dtype)
path.parent.mkdir (parents=True, exist_ok=True)

Image.fromarray(clipped) .save (path)

Page 64 of

APPENDIX A. ADDITIONAL MATERIAL

145

146 |def _to_8bit(arr: np.ndarray, dtype: np.dtype) -> np.ndarray:

147 info = np.iinfo(dtype)

148 scaled = np.clip(arr, info.min, info.max) / float(info.max)
149 scaled *= 255.0

150 return np.clip(np.rint(scaled), 0, 255).astype(np.uint8)

151

152

153 |# --- Lens correction

154

155 |def _build_lens_maps (kappa: float) -> tuple[np.ndarray, np.ndarray

1:
156 H, W = SENSOR_SHAPE
157 cx, cy = PRINCIPAL_POINT
158 pix_ratio = PIXEL_SIZE_Y_MICRONS / PIXEL_SIZE_X_MICRONS
159
160 x = np.arange (W, dtype=np.float32) - cx
161 y = (np.arange(H, dtype=np.float32)[:, Nonel] - cy) * pix_ratio
162 r2 = x[None, :] * x[None, :] + y * y
163 S =1.0 + kappa * r2
164
165 map_x = (x[None, :] * S + cx).astype(np.float32)
166 map_y = ((y * S) / pix_ratio + cy).astype(np.float32)
167 return map_x, map_y

168
169

170 |def _apply_lens_correction/(

171 img: np.ndarray,

172 maps: tuple[np.ndarray, np.ndarray],
173 *

174 interpolation: int = cv2.INTER_LINEAR,
175 border_value: float = 0.0,

176 |) -> np.ndarray:

Page 65 of

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

198

200

201

202

203

204

205

207

APPENDIX A. ADDITIONAL MATERIAL

66

def

def

def

map_x, map_y = maps

corrected = cv2.remap(
img.astype(np.float32),
map_x,
map_y ,
interpolation=interpolation,
borderMode=cv2.BORDER_CONSTANT,
borderValue=border_value,

)

return corrected

_as_float (gray: np.ndarray) -> np.ndarray:

return gray.astype(np.float32, copy=False) if gray.dtype != np.

float32 else gray

_restore_dtype(clean: np.ndarray, dtype) -> np.ndarray:
if np.issubdtype(dtype, np.floating):
return clean.astype (dtype)
info = np.iinfo(dtype)
clipped = np.clip(np.rint(clean), info.min, info.max)

return clipped.astype (dtype)

_load_dark_frame (path: str) -> np.ndarray:
arr = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if arr is None:
raise FileNotFoundError (f"Dark, frame not, found: {pathl}")

if arr.ndim != 2:

Page 66 of

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

APPENDIX A. ADDITIONAL MATERIAL 67

raise ValueError (f"Dark, frame must_ be, single-channel: {path
M)

return arr

def subtract_dark_frame (gray: np.ndarray, dark: np.ndarray) -> np.
ndarray:
if gray.shape != dark.shape:
raise ValueError (f"Dark frame shape {dark.shapel} does_ noty
match ,image {gray.shape}")

return _as_float(gray) - _as_float (dark)

def _build_mask(arr: np.ndarray, percentile: float, dilate_kernel:
int) -> np.ndarray:
thr = np.percentile(arr, percentile)
mask = arr > thr
k = max(1, int(dilate_kernel))
if k > 1:
kernel = np.ones((k, k), np.uint8)
mask = cv2.dilate(mask.astype(np.uint8), kernel, iterations
=1) .astype (bool)

return mask

def _column_correction(flat: np.ndarray, config: FlattenConfig) ->

np.ndarray:

work = flat.copy()

mask = _build_mask(work, config.column_mask_percentile, config.
column_dilate)

H, W = work.shape

for x in range (W):
col = work[:, x]

good = “mask[:, x]

Page 67 of

235

237

238

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

257

258

259

260

261

262

263

264

APPENDIX A. ADDITIONAL MATERIAL 68

if not np.any(good):

continue
offset = np.median(col[good])
work([:, x] -= offset

return work

def column_median_subtract(gray: np.ndarray) -> np.ndarray:

f = _as_float(gray)
med = np.median(f, axis=0, keepdims=True)
return f - med

def flatten_background(gray: np.ndarray, config: FlattenConfig |
None = None) -> np.ndarray:
if gray.ndim != 2:
raise ValueError("flatten_backgrounduexpectsuausingle—
channel image.")
cfg = config or FlattenConfig()

f = _as_float(gray)

mask = _build_mask(f, cfg.mask_percentile, cfg.dilate_kernel)
bg_level = np.median(f["mask]) if np.any("mask) else float(mp.

median (f))

f_bgfit = f.copy()

f_bgfit[mask] = bg_level

bg = cv2.GaussianBlur (f_bgfit, (0, 0), sigmaX=cfg.sigma, sigma¥
=cfg.sigma)

f_flat = £ - bg

if cfg.column_correction:

f_flat = _column_correction(f_flat, cfg)

Page 68 of

265

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

APPENDIX A. ADDITIONAL MATERIAL 69

return f_flat

def remove_radiation_spikes(gray: np.ndarray, neighborhood: int,
threshold: float) -> np.ndarray:
if gray.ndim != 2:
raise ValueError("remove_radiation_spikes expects aysingle-
channel image.")
n = max(1l, int(neighborhood))
k=2%xmn+ 1

f

I

_as_float (gray)

kernel = np.ones((k, k), dtype=np.float32)

summed = cv2.filter2D(f, -1, kernel, borderType=cv2.
BORDER_REFLECT)

neighbor_sum = summed - f

neighbor_count = k * k - 1

neighbor_mean = neighbor_sum / float(neighbor_count)

mask = (f - neighbor_mean) > threshold

cleaned = f.copy()

cleaned [mask] = neighbor_mean [mask]

return cleaned

def remove_gradient_spikes(gray: np.ndarray, threshold: float) ->
np.ndarray:
if gray.ndim != 2:
raise ValueError("remove_gradient_spikesuexpectsuausingle—
channel image.")
f = _as_float(gray)

out = f.copy()

center = f[1:-1, 1:-1]
left = f[1:-1, :-2]

right = f[1:-1, 2:]

Page 69 of

294

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

APPENDIX A. ADDITIONAL MATERIAL

70

up = f[:-2, 1:-1]

down = f[2:, 1:-1]

horiz_peak = (center - left > threshold) & (center - right >

threshold)

vert_peak = (center - up > threshold) & (center - down >
threshold)

mask = horiz_peak & vert_peak

if np.any(mask):
neighbors = np.stack([left, right, up, down], axis=0)
med = np.median(neighbors, axis=0)
out_view = out[1:-1, 1:-1]
out_view[mask] = med[mask]

return out

def clean_image(gray: np.ndarray, config: DenoiseConfig | Nomne =
None) -> np.ndarray:
if gray.ndim != 2:
raise ValueError("clean_image expects a, single-channel
image.")
cfg = config or DenoiseConfig()

work = _as_float(gray)

if cfg.apply_dark_frame:
dark = cfg.dark_frame
if dark is None and cfg.dark_frame_path:
dark = _load_dark_frame(cfg.dark_frame_path)
cfg.dark_frame = dark
if dark is not None:

work = subtract_dark_frame (work, dark)

if cfg.apply_column_median:

Page 70 of

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

APPENDIX A. ADDITIONAL MATERIAL 71

work = column_median_subtract (work)

if cfg.apply_flatten:

work = flatten_background(work, cfg.flatten)

if cfg.spike_mode == '"gradient":

work = remove_gradient_spikes(work, cfg.gradient_threshold)
else:

work = remove_radiation_spikes(work, cfg.spike_neighborhood

, cfg.spike_threshold)

if cfg.median_kernel and cfg.median_kermnel >= 3:
k = cfg.median_kernel if cfg.median_kernel J 2 == 1 else
cfg.median_kernel + 1

work = cv2.medianBlur (work.astype(np.float32), k)

if cfg.gaussian_kernel and cfg.gaussian_kernel > O:

k = cfg.gaussian_kernel if cfg.gaussian_kernel % 2 == 1
else cfg.gaussian_kernel + 1
work = cv2.GaussianBlur (work, (k, k), cfg.gaussian_sigma)

return _restore_dtype(work, gray.dtype)

--- Despin (per-pixel rotation)

def rodrigues(omega: np.ndarray, delta_t: float) -> np.ndarray:
theta = float(np.linalg.norm(omega) * delta_t)
if theta == 0.0:
return np.eye(3, dtype=np.float64)
k = omega / np.linalg.norm(omega)
kx, ky, kz =k

K = np.array(

Page 71 of

354

355

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

APPENDIX A. ADDITIONAL MATERIAL

72

def

def

def

[
[0.0, -kz, kyl,
[kz, 0.0, -kx],
[-ky, kx, 0.0],
1,

dtype=np.float64,
)

sin_t = np.sin(theta)

cos_t np.cos (theta)

return np.eye(3) + sin_t * K + (1.0 - cos_t) * (K @ K)

_pixel_rays(x_full: np.ndarray, y_full: np.ndarray) -> np.
ndarray:

cx, cy = PRINCIPAL_POINT

x_cam = (x_full - cx) * (PIXEL_SIZE_X_MICRONS / EFL_MICRONS)
y_cam = (y_full - cy) * (PIXEL_SIZE_Y_MICRONS / EFL_MICRONS)
rays = np.stack([x_cam, y_cam, np.ones_like(x_cam)], axis=-1)
return rays

_project_to_full_pixels(rays: np.ndarray) -> Tuple[np.ndarray,

np.ndarray]:

cx, cy = PRINCIPAL_POINT

x = rays[..., 0] / rays[..., 2]
y = raysl[..., 1] / raysl[..., 2]
u = x * (EFL_MICRONS / PIXEL_SIZE_X_MICRONS) + cx
v = y * (EFL_MICRONS / PIXEL_SIZE_Y_MICRONS) + cy

return u, v

_warp_even_field_to_reference(
even_img: np.ndarray,

output_rows_full: np.ndarray,

Page 72 of

386

387

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

408

409

410

411

412

413

414

415

416

APPENDIX A. ADDITIONAL MATERIAL

73

R_odd_to_even: np.ndarray,

) -> tuple[np.ndarray, np.ndarray]:

H_full, W = SENSOR_SHAPE

assert even_img.shape [0] H_full // 2

x_full = np.broadcast_to(np.arange (W,

output_rows_full.size, W))
np.broadcast_to (output_rows_fulll[:,

W))

y_full =

float64), (output_rows_full.size,

rays_odd = _pixel_rays(x_full,

rays_even = (R_odd_to_even @ rays_odd.T).T

u_full, v_£full =

v_even_idx = (v_full - 1.0) * 0.5

x = u_full.ravel()

y = v_even_idx.ravel ()

H_even, W_even = even_img.shape

valid = (x >= 0) & (x <= W_even - 1) & (y >=
- 1)

x0 = np.clip(np.floor(x).astype(np.int64), O,

yO = np.clip(np.floor(y).astype(np.int64), O,

x1 = np.clip(x0 + 1, 0, W_even - 1)

yl1 = np.clip(y0 + 1, 0, H_even - 1)

wx = x - x0

wy =y - yo

Ia = even_imgl[y0, x0]

Ib = even_img[y0, x1]

Ic = even_imgl[yl, x0]

Page 73 of

y_full) .reshape (-1,

dtype=np.float64), (

None] .astype (np.

3)

_project_to_full_pixels(rays_even)

0) & (y <= H_even

W_even - 1)

H_even - 1)

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

438

439

440

441

442

443

444

APPENDIX A. ADDITIONAL MATERIAL

74

Id = even_imgl[yl, x1]

sampled = (
(1 - wx) * (1 - wy) * Ia
+ wx *x (1 - wy) * Ib
+ (1 - wx) * wy * Ic

+ wx * wy * Id

)

sampled [“valid] = 0.0

valid_mask = valid.reshape(output_rows_full.size, W).astype(np
uint8)

return sampled.reshape(output_rows_full.size, W).astype(np.

float32), valid_mask

def recombine_with_rotation(img: np.ndarray, omega: np.ndarray,

delta_t: float) -> tuplel[np.ndarray, np.ndarray, np.ndarray]:
H, W = img.shape
if (H, W) != SENSOR_SHAPE:

raise ValueError (f"Unexpected image shape {img.shapel};

expected {SENSOR_SHAPE}")

odd = img[0::2, :]

even = img[1l::2, :]

R_odd_to_even = rodrigues (omega, delta_t)

odd_rows_full np.arange (0, H, 2)

even_rows_full = np.arange(l, H, 2)

aligned_even_on_odd, _ = _warp_even_field_to_reference(even,
odd_rows_full, R_odd_to_even)
aligned_even_on_even, mask_on_even =

_warp_even_field_to_reference(even, even_rows_full,

Page 74 of

445

446

447

448

449

454

455

456

457

458

460

461

462

463

464

465

467

468

469

470

471

472

473

APPENDIX A. ADDITIONAL MATERIAL 75

R_odd_to_even)

recombined = np.empty_like(img, dtype=np.float32)

recombined [0::2, :] = odd

recombined [1::2, :] aligned_even_on_even

mask_full = np.empty_like(img, dtype=np.uint8)
1

mask_full[0::2, :]

mask_full[1::2, :]

mask_on_even

return recombined, mask_full, R_odd_to_even

--- FFT / notch filtering

def fft_shift(mag: np.ndarray) -> np.ndarray:

return np.fft.fftshift(mag, axes=(0, 1))

def make_symmetric_notches(manual: Sequence[Tuplel[int, int]], width
int, height: int) -> list[Tuplelint, int]]:
out: list[Tuplel[int, int]] = []
for x, y in manual:
out .append ((x, y))
out.append (((width - x) % width, (height - y) % height))

return out

def apply_gaussian_notch_filter (complex_fft: np.ndarray,

notch_centers: Sequence[Tuple[int, int]], radius: float) -> None

rows, cols = complex_fft.shapel[:2]
sigma = radius / 2.0
two_sigma2 = 2.0 * sigma * sigma

Page 75 of

474

475

476

477

478

479

480

481

482

484

485

486

487

488

490

491

492

493

494

495

497

498

499

500

501

502

503

504

APPENDIX A. ADDITIONAL MATERIAL

76

yy, xx = np.mgrid[0:rows, O:cols]
H = np.ones ((rows, cols), dtype=np.float32)
for cx, cy in notch_centers:
d2 = (xx - cx) **x 2 + (yy - cy) *x*x 2
notch = 1.0 - np.exp(-d2 / two_sigma2)
H *= notch.astype(np.float32)
complex_fft[..., 0] *= H

complex_fft[..., 1] x= H

def fourier_notch_reconstruct(img: np.ndarray, manual_notches:
Sequence [Tuple[int, int]], radius: float) -> np.ndarray:
padded = cv2.copyMakeBorder (
img,

top=0,

bottom=cv2.getOptimalDFTSize (img.shape [0]) - img.shape[0],

left=0,
right=cv2.getOptimalDFTSize (img.shape[1]) - img.shape[1],
borderType=cv2.BORDER_CONSTANT,
value=0,

)

planes = [padded.astype(np.float32), np.zeros_like (padded,
dtype=np.float32)]

complex_i = cv2.merge(planes)

cv2.dft (complex_i, complex_i)

complex_i = fft_shift(complex_i)

h, w = complex_i.shape[:2]
notches = make_symmetric_notches (manual_notches, w, h)

apply_gaussian_notch_filter (complex_i, notches, radius)

complex_i = fft_shift(complex_i)
reconstructed = cv2.idft(complex_i, flags=cv2.DFT_REAL_OUTPUT

cv2.DFT_SCALE)

Page 76 of

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

APPENDIX A. ADDITIONAL MATERIAL

7

return reconstructed.astype(np.float32)

def _column_gradients(gray: np.ndarray, mask: np.ndarray | None =

None) -> np.ndarray:

"""Return |vertical gradientl per column; masked values set to

0.nmnn
col_diff = np.abs(np.diff (gray.astype(np.int32), axis=0))
if mask is not None:

m = mask[1:, :] & mask[:-1, :]

col_diff = np.where(m, col_diff, 0)

return col_diff

def _find_strongest_edge_in_column(gray: np.ndarray, col: int) ->

int:
grad = np.abs(np.diff (gray[:, col].astype(np.int32)))
if grad.size == 0:
return -1
idx = int(np.argmax(grad))

return idx if grad[idx] > 0 else -1

def _compute_column_threshold(gray: np.ndarray, col: int, k:
= 1.0) -> int:
grads = np.abs(np.diff (gray[:, col]l.astype(np.int32)))
mean = grads.mean() if grads.size else 0.0
std = grads.std() if grads.size else 0.0

return int(round(mean + k * std))

Page 77 of

float

APPENDIX A. ADDITIONAL MATERIAL 78

53¢ |def track_edge_andrey(gray: np.ndarray, start_col: int = 0, k:
float = 3.0, searchrange: int = 3) -> list[Tuplel[int, int]]:
535 mmnn

536 Original C++-style tracker: per column strongest local gradient

vs adaptive threshold,

537 zero-order hold if below threshold.

538 e

539 edges: list[Tuple[int, int]] = []

540 current_col = start_col

541 current_row = _find_strongest_edge_in_column(gray, current_col)
542 if current_row == -1:

543 return edges

544 edges . append ((current_col, current_row))

545

546 for current_col in range(start_col + 1, gray.shape[1]):

547 best_row = current_row

548 best_val = -1

549 for offset in range(-searchrange, searchrange + 1):

550 r = current_row + offset

551 if r < 0 or r >= gray.shape[0] - 1:

552 continue

553 grad = abs(int(gray[r + 1, current_col]) - int(graylr,

current_coll))

554 if grad > best_val:

555 best_val = grad

556 best_row = r

557 thresh = _compute_column_threshold(gray, current_col, k)
558 if best_val >= thresh:

559 current_row = best_row

560 edges.append ((current_col, current_row))

561 if current_row > gray.shape[0] - 20:

562 return edges

563 return edges

564

Page 78 of

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

APPENDIX A. ADDITIONAL MATERIAL

79

def fit_circle_ls(points: Sequence[Tuple[float, float]])
float, float, float] | None:
if len(points) < 3:
return None
A = 1]
Bv = []
for x, y in points:
A.append([x, y, 1.0]1)
Bv.append(x * x + y * y)
A = np.asarray (A, dtype=np.float64)
Bv = np.asarray(Bv, dtype=np.float64)
sol, _, _, _ = np.linalg.lstsq(A, Bv, rcond=None)
a, b, ¢ = sol
cx = a / 2.0
cy = b/ 2.0
r = np.sqrt(c + cx * cx + cy * cy)

return cx, cy, r

def fit_circle_hyper (points: Sequence[Tuple[float,

tuple[float, float, float] | None:
n = len(points)
if n < 3:
return None
pts = np.asarray(points, dtype=np.float64)
mean = pts.mean(axis=0)
x = pts[:, 0] - mean[O]
y = ptsl:, 1] - mean[1]

zZ =X * X +y *xy

Mxx np.mean(x * x)

Myy = np.mean(y * y)

Mxy = np.mean(x * y)

Page 79 of

float]]) ->

-> tuplel

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

APPENDIX A. ADDITIONAL MATERIAL

80

Mxz = np.mean(x * z)
Myz = np.mean(y * z)
Mzz = np.mean(z * z)

mean_z = np.mean(z)

M = np.array(

[
[Mzz, Mxz, Myz, mean_z],
[Mxz, Mxx, Mxy, 0.0],
[Myz, Mxy, Myy, 0.0],
[mean_z, 0.0, 0.0, 1.0],
]
)
N_inv = np.array(
[
[0.0, 0.0, 0.0, 0.5]1,
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.5, 0.0, 0.0, -2.0 * mean_z],
]
)

P = N_inv @ M
eigvals, eigvecs = np.linalg.eig(P)
mask_real = np.isclose(eigvals.imag, 0.0, atol=1e-10)

eigvals = eigvals.real[mask_real]

eigvecs = eigvecs[:, mask_real]

pos = eigvals[eigvals > 1le-12]
if pos.size == O0:

return None
idx = int(np.argmin(pos))

v = eigvecs[:, np.where(eigvals > 1le-12) [0][idx]].real

Page 80 of

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

APPENDIX A. ADDITIONAL MATERIAL

81

A, B, C, D =v
if abs(A) < le-T7:
return None
det = B * B+ C * C -4 % A x D
if det < O:

return None

cx -B / (2 x A)

-C / (2 * A)

cy
r = np.sqrt(det) / (2 * abs(4))

return cx + mean[0], cy + mean[1], r

def get_line_profile(img: np.ndarray, start:

end: Tuple[float, float]) -> list[int]:

Tuple[float,

float],

Sample pixel values along the line from start to end (inclusive

).

Uses a simple integer-step interpolation (Bresenham-like) to

avoid cv2.Linelterator.
nnn
H, W = img.shape
x0, yO = map(int, map(round, start))

x1, y1 = map(int, map(round, end))

dx = x1 - xO0
dy = y1 - yO
steps = max (abs(dx), abs(dy))
if steps == O:
if 0 <= x0 < W and 0 <= y0 < H:
return [int (img[y0, x01)]

return []

Page 81 of

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

APPENDIX A. ADDITIONAL MATERIAL 82
xs = np.linspace(x0, x1, steps + 1)
ys = np.linspace(y0, yl, steps + 1)
vals: list[int] = []
for x, y in zip(xs, ys):
xi, yi = int(round(x)), int(round(y))
if 0 <= xi < W and 0 <= yi < H:
vals.append (int (imgl[yi, xil))
return vals
def analyze_limb_profiles(
img: np.ndarray,
center: Tuple[float, float],
radius: float,
scan_length: int = 160,
margin: int = 20,
step_deg: int = 1,
) -> list[dict]:
H, W = img.shape
cx, Ccy = center
results: list[dict] = []
for angle in range (0, 360, step_deg):
rad = np.deg2rad(angle)
r_inner = radius - margin
r_outer = radius + (scan_length - margin)
start = (cx + r_inner * np.cos(rad), cy + r_inner * np.sin(
rad))
end = (cx + r_outer * np.cos(rad), cy + r_outer * np.sin(
rad))

if not (0 <= start[0] < W and 0 <= start[1] < H and 0 <=

end[0] < W and 0 <= end[1] < H):
continue

profile = get_line_profile(img, start, end)

Page 82 of

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

APPENDIX A. ADDITIONAL MATERIAL

83

grads = [abs(profile[i + 1] - profile[i]) for i in range(

len(profile) - 1)]

if grads:

max_grad = max(grads)

max_pos = grads.index(max_grad)
else:

max_grad = 0

max_pos = 0

results.append(

{
"angle_deg": angle,
"max_grad": max_grad,
"max_grad_pos": max_pos,
"profile_len": len(profile),
by

)

return results

--- Star tracker integration (delegated to star_tracker.py)

STAR_MAX_CATALOG_MAG = 8.0

def run_star_tracker_wrapper (
image_path: str,
catalog_path: str,
max_catalog_mag: float = 8.0,
output_path: str = "annotated.png",

detection_mask: Optional[np.ndarray] = None,

Page 83 of

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

APPENDIX A. ADDITIONAL MATERIAL 84

"""Delegate to star_tracker.run_star_tracker for full
functionality."""

star_tracker.run_star_tracker (
image_path=image_path,
catalog_path=catalog_path,
max_catalog_mag=max_catalog_mag,

output_path=output_path,

detection_mask=detection_mask,

def process_folder(

science_dir: Path,

output_dir: Path,

omega: np.ndarray,

delta_t_s: float,

denoise_config: DenoiseConfig | None = None,

lens_maps: tuple[np.ndarray, np.ndarray] | None = None,
) -> List[Path]:

frames = sorted(science_dir.glob("IMD_*.png"))

if not frames:

print (f"No,scienceframes found in {science_dirl}")

return []

written: List[Path] = []

for frame in frames:
raw = _load_grayscale(frame)
dtype = raw.dtype

work = raw.astype(np.float32)

Page 84 of

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

APPENDIX A. ADDITIONAL MATERIAL 85

if APPLY_DESPIN:
recombined, mask_full, R = recombine_with_rotation (work
, omega, delta_t_s)
work = recombined
work [mask_full == 0] = 0
else:
mask_full = np.ones_like(work, dtype=np.uint8)

R = np.eye(3, dtype=np.float64)

if APPLY_LENS and lens_maps is not None:
work = _apply_lens_correction(work, lens_maps)
mask_full = _apply_lens_correction(mask_full, lens_maps
, interpolation=cv2.INTER_NEAREST)
mask_full = (mask_full > 0.5).astype(np.uint8)

work [mask_full == 0] = O

if APPLY_RESIDUAL_GLOW:

work = column_median_subtract (work)

if APPLY_FFT_NOTCH:
work = fourier_notch_reconstruct(work, MANUAL_NOTCHES,

NOTCH_RADIUS)

if APPLY_DENOISE and denoise_config is not None:

work = clean_image(work, denoise_config)

Analysis-only steps

edges: list[Tuplel[int, int]l] = T[]

circle_ls: Optional [Tuple[float, float, float]] = None
circle_hyper: Optional [Tuple[float, float, float]] = Nomne

limb_stats: list[dict] = []

if APPLY_EDGE_TRACKING:

edge_img = work.astype(np.uint8)

Page 85 of

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

APPENDIX A. ADDITIONAL MATERIAL 86

H_img = edge_img.shape [0]
Base ROI: lower portion + overlap mask
roi_start = int (0.5 * H_img)
edge_mask = np.ones_like(edge_img, dtype=bool)
edge_mask[:roi_start, :] = False
edge_mask [mask_full == 0] = False
Brightness gate to avoid tracking pure background
valid_pixels = edge_img[edge_mask]
if valid_pixels.size > 0:
bright_thresh = np.percentile(valid_pixels, 50.0)
bright_mask = edge_img >= bright_thresh
edge_mask &= bright_mask
edge_img_roi = edge_img.copy ()
edge_img_roi[“edge_mask] = 0
Estimate dominant gradient row to focus search band
row_energy = np.sum(np.abs(np.diff (edge_img_roi.astype(
np.int32), axis=0)), axis=1)
if np.any(row_energy):
peak_row = int(np.argmax(row_energy))
else:
peak_row = int(0.75 * H_img)
band_half = 60
band = (max(l, peak_row - band_half), min(H_img - 1,
peak_row + band_half))
edges = track_edge_andrey(edge_img_roi, start_col=10, k

=3.0, searchrange=3)
if APPLY_CIRCLE_FITS and len(edges) >= 8:
circle_1s = fit_circle_1ls (edges)

circle_hyper = fit_circle_hyper (edges)

if APPLY_LIMB_PROFILES and circle_1ls:

cx, cy, radius = circle_ls

Page 86 of

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

APPENDIX A. ADDITIONAL MATERIAL 87

limb_stats = analyze_limb_profiles(work.astype(np.uint8

), (cx, cy), radius)

Optional visualization of edge + fits
if APPLY_EDGE_TRACKING:
Use the same dynamic range as the saved output (no
extra normalization to avoid boosting noise)
overlay_base = _to_8bit(work, dtype)
overlay = cv2.cvtColor (overlay_base, cv2.COLOR_GRAY2BGR
)
Red points: edge tracking samples
for x, y in edges:
cv2.circle(overlay, (int(x), int(y)), 1, (0, O,
255), -1, lineType=cv2.LINE_AA)
Blue line: LS fit (Kasa)
if circle_ls:
cx_1, cy_1, r_1 = circle_ls
cv2.circle(overlay, (int(round(cx_1)), int (round(
cy_1))), int(round(r_1)), (255, 0, 0), 2,
lineType=cv2.LINE_AA)
Yellow line: Hyper fit
if circle_hyper:
cx_h, cy_h, r_h = circle_hyper
cv2.circle(overlay, (int(round(cx_h)), int(round(
cy_h))), int(round(r_h)), (0, 255, 255), 2,
lineType=cv2.LINE_AA)
Write overlay alongside the main output
overlay_path = output_dir / f"{frame.stem}_limb_overlay
.png"

cv2.imwrite(str(overlay_path), overlay)

out_path = output_dir / frame.name
_save_grayscale (work, out_path, dtype)

if APPLY_DESPIN:

Page 87 of

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

APPENDIX A. ADDITIONAL MATERIAL 88

mask_path = MASK_OUTPUT_DIR / frame.name

_save_grayscale (mask_full, mask_path, np.uint8)

if APPLY_STAR_TRACKER:
try:
annotated_path = out_path.with_name(f"{out_path.
stem}_annotated.png")
run_star_tracker_wrapper (
image_path=str (out_path),
catalog_path=str (STAR_CATALOG_PATH),
max_catalog_mag=STAR_MAX_CATALOG_MAG,
output_path=str (annotated_path),
detection_mask=mask_full if (APPLY_DESPIN and
STAR_USE_DESPIN_MASK) else None,
)
print (£",,star,tracker_ annotated, ->,{annotated_path
IR
except Exception as exc:

print (f",,star,tracker failed: {excl}")

Report
tag = []
if APPLY_DESPIN:
theta_deg = np.linalg.norm(omega) * delta_t_s * 180.0 /
np.pi
tag.append(f"dtheta={theta_deg:.6f}deg")
if APPLY_LENS:
tag.append("lens")
if APPLY_DENOISE:
tag.append ("denoise")
if APPLY_FFT_NOTCH:
tag.append ("fft")
if APPLY_RESIDUAL_GLOW:

tag.append ("colmed")

Page 88 of

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

APPENDIX A. ADDITIONAL MATERIAL

89

def

summary = ",".join(tag) if tag else "raw"
print (f"{frame.name} ,-> {out_path} [{summary}]")
if circle_ls:
cx, cy, r = circle_1ls
print (£" circle LS: cx={cx:.2f}, cy={cy:.2f}, r={r:.2f
)
if circle_hyper:
cx, cy, r = circle_hyper
print (f" ,circle Hyper:cx={cx:.2f}, cy={cy:.2f}, r={r
2L2f3FM)
if limb_stats:
best = max(limb_stats, key=lambda d: d["max_grad"])
print (£",,limb maxgrad {best[’max_grad’]} at angle {
best[’angle_deg’]l} deg")
written.append (out_path)

return written

main() -> None:

output_dir = OUTPUT_DIR

output_dir.mkdir (parents=True, exist_ok=True)

denoise_cfg = DENOISE_SETTINGS if APPLY_DENOISE else None

if denoise_cfg and denoise_cfg.apply_dark_frame and denoise_cfg
.dark_frame is None and denoise_cfg.dark_frame_path:
denoise_cfg.dark_frame = _load_grayscale(Path(denoise_cfg.

dark_frame_path))

omega = np.array (OMEGA, dtype=np.float64)
if OMEGA_FRAME == "spacecraft":
omega = np.array(SC_TO_CHUD_MATRIX @ omega, dtype=np.

float64)

lens_maps = _build_lens_maps (LENS_KAPPA) if APPLY_LENS else

None

Page 89 of

897

898

899

900

901

902

903

904

905

906

907

908

909

10

11

12

13

14

16

17

APPENDIX A. ADDITIONAL MATERIAL

90

process_folder (
science_dir=SCIENCE_DIR,
output_dir=output_dir,
omega=omega,
delta_t_s=DELTA_T,
denoise_config=denoise_cfg,

lens_maps=lens_maps,

n

if __name__ __main__":

main ()

Listing A.1: Main script

A.2.2 Star tracker script

import numpy as np

import cv2

from dataclasses import dataclass

from typing import List, Tuple, Dict, Optional
import math

import re

import csv

from pathlib import Path

from denoising import DenoiseConfig, FlattenConfig,

@dataclass

class DetectedStar:

Page 90 of

clean_image

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

APPENDIX A. ADDITIONAL MATERIAL 91

x: float # pixel x (column)

y: float # pixel y (row)

flux: float # integrated brightness

ray_cam: Optional[np.ndarray] = None # 3D unit vector in

camera frame
catalog_idx: Optional[int] = None # catalog index after

matching

@dataclass
class ImagelnputConfig:
"""Configuration for loading the input image with optional
rotation/resizing."""
path: str
rotate_deg: float = 0.0 # CCW rotation for
processing

resize_to: Optional [Tuple[int, int]] = None # (width, height)

in px

@dataclass

class CatalogStar:
name: str
ra_deg: float
dec_deg: float
mag: float

vec_inertial: np.ndarray

@dataclass

class ProcessingOptions:
"""Processing toggles for star detection."""
background_subtraction: bool = False

background_kernel: int = 51

Page 91 of

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

APPENDIX A. ADDITIONAL MATERIAL

92

normalize: bool = False

threshold_multiplier: float = 2.5

morph_open: bool = False
morph_kernel: int = 3
morph_iterations: int = 1
min_area: Optional[int] = 2
max_area: Optional[int] = 20000

max_stars: int = 200
saturated_threshold: int = 225

allow_oversized_saturated: bool = True

def _radec_to_vec(ra_deg: float, dec_deg: float) -> np.ndarray:

ra = math.radians(ra_deg)

dec = math.radians (dec_deg)

x = math.cos(dec) * math.cos(ra)
y = math.cos(dec) * math.sin(ra)
z = math.sin(dec)

return np.array([x, y, z], dtype=np.float64)

Hardware values from the documentation

JUNO_HARDWARE_PARAMS = {

"efl_um": 20006.0, # Effective Focal Length

"pixel_x_um": 8.6, # Pixel size X (um)

"pixel_y_um": 8.3, # Pixel size Y (um)

"res_x": 752.0, # Native width

"res_y": 580.0, # Native height

"cx_hardware": 383.0, # Native optical center X

"cy_hardware": 257.0, # Native optical center Y

"kappa": 3.3e-8 # Distortion coefficient (small but
included)

Page 92 of

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

APPENDIX A. ADDITIONAL MATERIAL 93

JUNO ASC (CHU-D) lens parameters
LENS_JUNO_ASC = {

derived focal lengths in pixels

"fx": 20006.0 / 8.6, # 72326.28 px
"fy": 20006.0 / 8.3, # 72410.36 px
"cx": 383.0,
"cy": 257.0,
"kappa": 3.3e-8, # single-term radial distortion
"Ww"': 752,
"H": 580,
X
B oo __

STAR_IMAGE_PATH = Path("JUNO_ Despin Images") / "Despinned" / "
Denoised"

STAR_IMAGE_FALLBACK = Path("JUNO_ Despin,Images") / "Despinned" / "
IMD_621530842 .422424 . png"

Use a Gaia/HIP CSV as the primary catalog for labeling.

STAR_CATALOG_PATH = Path("/Users/vojtadeconinck/Downloads/
ImageAnalysis30300/combined_stars.csv")

STAR_OUTPUT_PATH = Path("annotated.png")

STAR_MAX_CATALOG_MAG = 8.0

STAR_ROTATE_DEG = 0.0

STAR_RESIZE_TO: Optional [Tuple[int, int]] = None

STAR_FLIP_CODE: Optional[int] = None # None (no flip), O=vertical,

l=horizontal, -1=both

STAR_MIRROR_X_IN_RAYS = True # mirror camera-x in the ray

mapping instead of flipping the image

STAR_PROCESSING_MODE = "real" # fallback preset

Page 93 of

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

APPENDIX A. ADDITIONAL MATERIAL

94

STAR_PROCESSING_OPTIONS: Optional [ProcessingOptions] =
ProcessingOptions(
background_subtraction=True,
background_kernel=61,
normalize=True,
threshold_multiplier=1.4,
morph_open=True,
morph_kernel=3,
morph_iterations=1,
min_area=10,
max_area=600,
max_stars=400,
saturated_threshold=220,
allow_oversized_saturated=True,
)
STAR_CAMERA_OVERRIDE: Optional[Dict[str, float]] = None
STAR_MASK_BORDERS_PX = (20, 80, 20, 20) # (top, bottom, left,
right) mask away overlap-loss edges
Debug output settings
STAR_SAVE_DEBUG_INTERMEDIATES = True
STAR_DEBUG_DIR = Path("JUNO_ Despin,Images") / "star_tracker_debug"
Precomputed valid-region masks (odd/even overlap) produced by
juno_despin
STAR_VALID_MASK_DIR = Path("JUNO_Despin,Images") / "Despinned" / "
Masks"
Jupiter glare mask settings (optional)
STAR_SAVE_JUPITER_MASK = True
STAR_JUPITER_PERCENTILE = 90.0 # high percentile to isolate glare
(lower to include halo)
STAR_JUPITER_MIN_AREA = 3000 # minimum glare component area;

stars are << this area

STAR_JUPITER_MIN_Y_FRAC = 0.25 # only suppress blobs in lower part

of image

STAR_JUPITER_DILATE = 35 # dilate glare mask to include halo

Page 94 of

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

APPENDIX A. ADDITIONAL MATERIAL 95

STAR_JUPITER_PAD_Y = 0 # no rectangular padding, rely on
dilation
STAR_JUPITER_PAD_X = 0

STAR_DISABLE_JUPITER_FALLBACK = True # skip row-mean fallback if
no blob found

STAR_JUPITER_EXCLUDE_STAR_MAX_AREA = 400 # components <= this area

are treated as stars, not glare

Auto-build overlap mask from the input image instead of fixed
borders (used if no precomputed mask)

STAR_AUTO_OVERLAP_MASK = True

STAR_AUTO_MASK_PERCENTILE = 70.0 # percentile to threshold non-
zero region

STAR_AUTO_MASK_CLOSE_KERNEL = 9 # odd kernel for closing

STAR_AUTO_MASK_ERODE = 2 # pixels to erode after closing (

set 0 to skip)

APPLY_DENOISING = False

STAR_DENOISE_SETTINGS = DenoiseConfig(
apply_flatten=False,
spike_neighborhood=1,
spike_threshold=40.0,
median_kernel=3,
gaussian_kernel=0,
gaussian_sigma=0.0,

)

STAR_ATTITUDE_MIN_INLIERS

4

STAR_ATTITUDE_MAX_ERR_DEG = 0.2

STAR_ATTITUDE_MAX_ITER = 3000

Name-lookup table to map HIP/Gaia IDs to readable labels.

STAR_NAME_LOOKUP_PATH = Path("gaia_to_names.csv") # Gaia->HIP
mapping source

STAR_GAIA_HIP_PATH = Path("2025-12-05-15-20-27-425171.csv") #

default Gaia->HIP crossmatch

Page 95 of

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

APPENDIX A. ADDITIONAL MATERIAL 96

BSC TSV is only used as a positional fallback when the lookup is
missing.

STAR_BSC_PATH = Path("bright_star_catalog.tsv") #
default Bright Star Catalog

STAR_IAU_PATH = Path("IAU-Cataloggof,Star Names,(always_ upyto,date)
.csv" # optional IAU names

STAR_HIP_TO_HD_PATH: Optional [Path] = None # set
if you have a HIP->HD mapping CSV

STAR_GAIA_POS_PATH = Path("gaia_bright_stars.csv") #

optional Gaia positions to help name matching

def _rotate_image_keep_size(image: np.ndarray, angle_deg: float) ->
np.ndarray:
"""Rotate around image center while preserving dimensions."""
if abs(angle_deg) < le-6:
return image
h, w = image.shape[:2]
M = cv2.getRotationMatrix2D((w / 2.0, h / 2.0), angle_deg, 1.0)

return cv2.warpAffine(

image,
M,
(w, h),

flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,

borderValue=0,

def _hms_to_deg(hms: str) -> float:
"""Convert ’*HH:MM:SS.SSS’ or compact ’HHMMSS.S’ to RA in
degrees. """
hms = hms.strip()
if ":" in hms:

h, m, s = hms.split(":")

Page 96 of

187

189

190

191

192

193

194

195

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

APPENDIX A. ADDITIONAL MATERIAL

97

def

def

h = float(h); m = float(m); s = float(s)
else:

compact notation ’HHMMSS.S’

if len(hms) < 6:

raise ValueError (f"RA_ string_ too,short: {hms!r}")

h = float (hms[0:2])
m = float (hms[2:4])
s = float(hms[4:])

return 15.0 * (h + m/60.0 + s/3600.0)

_dms_to_deg(dms: str) -> float:

"""Convert ’+DD:MM:SS.SS’ or ’+DDMMSS’ style strings to Dec in
degrees. """

dms = dms.strip()

if ":" in dms:
sign = -1.0 if dms.startswith("-") else 1.0
body = dms.lstrip("+-")
d, m, s = body.split(":")
d = float(d); m = float(m); s = float(s)

else:

sign -1.0 if dms[0] == "-" else 1.0
body = dms.lstrip("+-")
if len(body) < 4:

raise ValueError (f"Decystring tooyshort: {dms!r}")

d = float(body[0:2])

m float (body [2:4])

s float (body[4:]) if len(body) > 4 else 0.0

return sign * (d + m/60.0 + s/3600.0)

_to_uint8_debug(img: np.ndarray) -> np.ndarray:

"""Scale various arrays to uint8 for debug dumps.

if img.dtype == np.uint8:

Page 97 of

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

236

237

238

239

240

241

242

243

244

245

246

247

248

249

APPENDIX A. ADDITIONAL MATERIAL

98

def

return img
if img.dtype == np.bool_:
return (img.astype(np.uint8) * 255)
if np.issubdtype(img.dtype, np.integer):
max_val = np.iinfo(img.dtype) .max
return np.clip(img.astype(np.float32) * (255.0 / max_val),

0, 255).astype(np.uint8)

=
(]
]

float (np.percentile(img, 1.0))

=3
.
I

float (np.percentile(img, 99.0))
if hi <= lo:
hi = 1lo + 1le-6
norm = np.clip((img - lo) / (hi - lo), 0.0, 1.0)

return np.clip(norm * 255.0, O, 255).astype(np.uint8)

_make_viz_binary(img_u8: np.ndarray) -> np.ndarray:

"""Create a more visible binary for sparse masks (dilate and

invert)."""
if img_u8.dtype !'= np.uint8:

img_u8 = _to_uint8_debug(img_u8)
if img_u8.max() == 0:

return img_u8

If mostly 0/255, dilate to make sparse points visible and
invert for contrast.

unique_vals = np.unique (img_u8)

if unique_vals.size <= 3:
k = np.ones((3, 3), np.uint8)

dil = cv2.dilate(img_u8, k, iteratiomns=1)

inv 255 - dil
return inv

return img_u8

Page 98 of

250

251

252

253

254

255

256

258

259

260

261

262

264

265

266

267

268

270

271

272

273

274

275

276

277

APPENDIX A. ADDITIONAL MATERIAL 99

def _make_overlay(mask_u8: np.ndarray, base_gray_u8: np.ndarray) ->
np.ndarray:
"""Overlay binary mask as red contours on the grayscale base

image."""

if mask_u8.dtype != np.uint8:
mask_u8 = _to_uint8_debug(mask_u8)

if base_gray_u8.dtype != np.uint8:
base_gray_u8 = _to_uint8_debug(base_gray_u8)

color = cv2.cvtColor(base_gray_u8, cv2.COLOR_GRAY2BGR)

if mask_u8.max() == O0:
return color

contours, _ = cv2.findContours (mask_u8, cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

cv2.drawContours (color, contours, -1, (0, 0, 255), 1)

return color

def _quadrilateral_mask_from_image (img_gray: np.ndarray,
thresh_percentile: float = 0.5,
close_kernel: int = 9,

erode_px: int = 2) -> np.ndarray

"""Build a convex/quad mask from the truly non-zero region of
the image."""
positive = img_gray[img_gray > 0]

if positive.size == 0:

return np.zeros_like(img_gray, dtype=np.uint8)

thr_val float (np.percentile (positive, thresh_percentile))
thr_val = max(1.0, thr_val)
mask = (img_gray > thr_val).astype(np.uint8)
if close_kernel and close_kermnel > 1:
k = close_kernel if close_kernel % 2 == 1 else close_kernel

+ 1

kernel = np.ones((k, k), np.uint8)

Page 99 of

278

279

280

281

282

283

284

285

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

APPENDIX A. ADDITIONAL MATERIAL

100

mask = cv2.morphologyEx (mask, cv2.MORPH_CLOSE, kernel,
iterations=1)
if erode_px and erode_px > O0:
k = max(1, int(erode_px))
kernel = np.ones((k, k), np.uint8)

mask = cv2.erode(mask, kernel, iterations=1)

Convex hull of non-zero pixels
ys, xs = np.nonzero (mask)
if ys.size == 0:
return np.zeros_like(mask, dtype=np.uint8)
pts = np.column_stack((xs, ys)).astype(np.int32)

hull = cv2.convexHull (pts)

Try to approximate to 4 points if possible

approx = cv2.approxPolyDP (hull, 0.01 * cv2.arcLength(hull, True

), True)
poly = approx if len(approx) >= 3 else hull
quad_mask = np.zeros_like(mask, dtype=np.uint8)
cv2.fillPoly (quad_mask, [polyl, 1)

return quad_mask

def _write_debug_images (prefix: str, images: Dict[str, np.ndarray],

out_dir: Optional [Path] = None) -> None:

"""Write intermediate debug images (uint8 scaled) to
STAR_DEBUG_DIR or a custom subfolder."""

if not images:
return

out_dir = out_dir or STAR_DEBUG_DIR

out_dir .mkdir (parents=True, exist_ok=True)

base_gray = images.get("step_input_gray")

base_gray_u8 = _to_uint8_debug(base_gray) if base_gray is not

None else None

Page 100 of

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

APPENDIX A. ADDITIONAL MATERIAL 101

for name, arr in images.items():
try:
out = _to_uint8_debug(arr)
except Exception:
continue
cv2.imwrite(str(out_dir / f"{prefix}_{name}.png"), out)
Also write a visibility-enhanced version for sparse
binaries
viz = _make_viz_binary (out)
if viz is not out:
cv2.imwrite (str(out_dir / f"{prefix}_{name}_viz.png"),
viz)
Overlay on base gray if available and this looks 1like a
binary/sparse mask
if base_gray_u8 is not None and out.max() > O and np.unique
(out) .size <= 10:
overlay = _make_overlay(out, base_gray_u8)
cv2.imwrite (str(out_dir / f"{prefix}_{name}_overlay.png

"), overlay)

def _load_precomputed_mask(image_path: Path) -> Optional [np.ndarray

1:

W

Load a precomputed valid-region mask (odd/even overlap)
matching the image filename.

Returns a uint8 mask with 1s where valid, or None if not found
or unreadable.

o

mask_path = STAR_VALID_MASK_DIR / image_path.name

if not mask_path.exists():
return None

mask = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE)

if mask is None:

Page 101 of

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

APPENDIX A. ADDITIONAL MATERIAL

102

return None

return (mask > 0).astype(np.uint8)

def _compute_jupiter_mask(
img_gray: np.ndarray,
percentile: float = STAR_JUPITER_PERCENTILE,
min_area: int = STAR_JUPITER_MIN_AREA,
min_y_frac: float = STAR_JUPITER_MIN_Y_FRAC,
dilate_px: int = STAR_JUPITER_DILATE,

pad_y: int = STAR_JUPITER_PAD_Y,

pad_x: int STAR_JUPITER_PAD_X,

) -> Optional [np.ndarray]:

o

Detect bright Jupiter/glare blobs and return a uint8 mask (1
glare) .

- Blur first to merge the limb/halo.

- Threshold on a high percentile.

- Keep large components low in the image (Jupiter region),
union them, pad and dilate.

Returns None if nothing is found.

Light blur to merge halo structures

img_blur cv2.GaussianBlur (img_gray, (9, 9), 0)
positive = img_blur[img_blur > 0]
if positive.size == 0:
return None
thr = float(np.percentile(positive, percentile))
if thr <= 0:
return None
bright = (img_blur >= thr).astype(np.uint8)
num, labels, stats, centroids = cv2.

connectedComponentsWithStats (bright, connectivity=8)

Page 102 of

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

APPENDIX A. ADDITIONAL MATERIAL

103

H, W img_gray.shape
mask = np.zeros_like(img_gray, dtype=np.uint8)
if num > 1:
for idx in range (1, num):
area = stats[idx, cv2.CC_STAT_AREA]
if area < min_area:
continue
if area <= STAR_JUPITER_EXCLUDE_STAR_MAX_AREA:
continue # likely a star or small blob
y_c = centroids[idx][1]
if y_c¢ < min_y_frac * H:

continue

Use the actual component shape (not just its bounding

box)

mask = np.logical_or(mask, labels == idx).astype(np.

uint8)

Fallback: if no blob matched, optionally try a row-mean band

(disabled if flag set)

if mask.max() == 0 and not STAR_DISABLE_JUPITER_FALLBACK:
row_mean = img_blur.mean(axis=1)
m = row_mean.mean ()
s = row_mean.std()
cutoff = max(m + s, np.percentile(row_mean, 90))
rows = np.where(row_mean >= cutoff) [0]

if rows.size > O0:
yO = int(rows.min())

y1 = int(rows.max ())

if y1 > H * 0.4: # ensure it’s towards the bottom

mask[y0:y1 + 1, :] =1

if mask.max() == 0:

return None

Page 103 of

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

APPENDIX A. ADDITIONAL MATERIAL

104

dilate to catch halo
if dilate_px and dilate_px > 1:
k = dilate_px if dilate_px % 2 == 1 else dilate_px + 1
kernel = np.ones((k, k), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
return mask
def load_yale_bsc_ascii(path: str, max_mag: float = 6.5):

Parse the ASCII ’ybsc5’ (Yale Bright Star Catalog 5) file.

The parts[6] field looks 1like:
’000001.1+444022000509.9+451345114.44-16.88"°

RA1950 Dec1950 RA2000 Dec2000 1 b

Parsed sequentially instead of using hard-coded indices.

catalog = []

with open(path, "r", encoding="ascii", errors="ignore") as f:
for line in f£f:
line = line.rstrip("\n")

if not line.strip():

continue

Skip headers/comment lines

if line.startswith("sbsc5") or "BSC_number" in line or

"BSC_num" in line:
continue
if not line.strip() [0].isdigit():

continue
parts = line.split ()

if len(parts) < 8:

continue

Page 104 of

428

429

431

432

433

434

435

436

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

456

457

APPENDIX A. ADDITIONAL MATERIAL

105

Catalog number
try:

num = int (parts[0])
except ValueError:

continue

ra_block = parts[6]

mag_str = parts/[7]
Minimum length check
if len(ra_block) < 30:

continue

Sequential parsing

i=0
ral950_str = ra_block[i:1i+7]; i += 7
’000001.1°

dec1950_str = ra_block[i:i+7]; i += 7
744440227

ra2000_str = ra_block[i:i+7]; i += 7
’000509.9°

dec2000_str = ra_block[i:i+47]; i += 7
’+451345°

Ignore remaining galactic 1,b fields

Magnitude
try:
mag = float(mag_str)
except ValueError:
continue
if mag > max_mag:

continue

Convert RA/Dec to degrees

Page 105 of

458

460

461

462

463

464

465

466

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

488

489

APPENDIX A. ADDITIONAL MATERIAL

106

try:

ra_deg _hms_to_deg(ra2000_str)
dec_deg = _dms_to_deg(dec2000_str)
except ValueError:

Skip malformed record

continue

vec = _radec_to_vec(ra_deg, dec_deg)

name = f"BSC{num:04d}"
catalog.append (
CatalogStar(
name=name ,
ra_deg=ra_deg,
dec_deg=dec_deg,
mag=mag,

vec_inertial=vec,

if not catalog:

raise RuntimeError(”NoustarsuparsedufromubeCS;utheuformatu

may_be_unexpected.")
catalog.sort (key=lambda c: c.mag)
print (f"Loaded {len(catalog) }stars, from {path}")

return catalog

def load_gaia_csv(path: str, max_mag: float = 6.5) -> Listl[

CatalogStar]:

Read Gaia/Hipparcos CSV and tolerate mixed-case column names.

catalog: List[CatalogStar] = []

with open(path, "r", encoding="utf-8", newline="") as f:

Page 106 of

490

491

492

493

494

495

496

497

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

APPENDIX A. ADDITIONAL MATERIAL

107

reader = csv.DictReader (f)

Force lowercase headers (ra, dec, mag) for robustness

if reader.fieldnames:

reader.fieldnames = [name.lower () for name in reader.

fieldnames]

for row in reader:
try:
ra_deg = float(row["ra"])
dec_deg = float(row["dec"])
mag = float(row["mag"])
except (KeyError, ValueError):

continue

if mag > max_mag:

continue

name = row.get("source_id", "Unknown")

vec = _radec_to_vec(ra_deg, dec_deg)

catalog.append (
CatalogStar (
name=str (name) ,
ra_deg=ra_deg,
dec_deg=dec_deg,
mag=mag,

vec_inertial=vec,

if not catalog:

raise RuntimeError ("No,stars parsed. Check the CSV file.")

Page 107 of

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

APPENDIX A. ADDITIONAL MATERIAL 108

def

def

def

catalog.sort (key=lambda c: c.mag)
print (f"Loaded {len(catalog) },stars, from, {path}")

return catalog

_parse_hip_from_name (name: str) -> Optionall[int]:
"""Extract HIP number from strings like ’HIP32349°>."""
m = re.match(r"hip\s*(\d+)", name.strip(), flags=re.IGNORECASE)
if not m:
return None
try:
return int(m.group (1))
except ValueError:

return None

_parse_gaia_from_name (name: str) -> Optionall[int]:

"""Extract Gaia source_id if the name is a pure digit string.
nmn

s = name.strip()

if not s.isdigit():
return None
try:
return int(s)
except ValueError:

return None

load_gaia_to_hip_map(path: Path) -> Dict[int, int]:

"""Load Gaia->HIP mapping from gaia_to_names.csv (HIP column).

if not path.exists():
print (£"INFO: ,Gaia->HIP_ lookupy,fileynotfound at, {pathl},

skippinggmapping.")

Page 108 of

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

APPENDIX A. ADDITIONAL MATERIAL 109

return {}

gaia_to_hip: Dict[int, int] = {}

n n

with open(path, "r", encoding="utf-8", newline="") as f:
reader = csv.DictReader (f)
for row in reader:
hip_raw = row.get ("HIP") or row.get("hip")
gaia_raw = row.get("gaia_id") or row.get ("GAIA_ID") or
row.get("gaia")
if not gaia_raw or not hip_raw:
continue
try:
gaia_val = int(float(gaia_raw))
hip_val = int(float (hip_raw))
except ValueError:
continue
gaia_to_hip[gaia_val] = hip_val
print (f"Loaded {len(gaia_to_hip)} ,Gaia->HIP mappings, from {path
1)

return gaia_to_hip

def load_iau_names (path: Path) -> Dict[int, str]:

W

Load HIP->IAU proper name map from the IAU catalog CSV if
available.

Prefer the Simbad spelling column when present.

W

if not path.exists():
return {}

hip_names: Dict[int, str]l = {}

with open(path, "r", encoding="utf-8", newline="") as f:
reader = csv.DictReader(filter(lambda 1ln: 1ln.strip(), £))

for row in reader:

Page 109 of

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

APPENDIX A. ADDITIONAL MATERIAL

110

Strip simple HTML span wrappers and normalize keys

cleaned = {}

for k, v in row.items():

if k is None:
continue

key =

cleaned [key.lower ()] = v

hip_raw = (
cleaned.get ("hip")
or cleaned.get("hip,id")
or row.get("HIP")
or row.get("hip")
or row.get("Hip")
)
if not hip_raw:

continue

name = (

re.sub(r"<[~>]+>", "v)

k) .strip)

cleaned.get ("simbad spelling")

or cleaned.get("proper_ names")

or row.get("Name")
or row.get("name"
)
if not name:

continue

try:
hip_val =
except ValueError:
continue

hip_names [hip_val] =

int (float (hip_raw))

name.strip ()

print (f"Loaded {len(hip_names)} IAU_ HIP names_ from {path}")

return hip_names

Page 110 of

619

620

621

622

623

624

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

APPENDIX A. ADDITIONAL MATERIAL 111

def _parse_radec_from_bsc(row: Dict[str, str]) -> Optional[Tuplel
float, float]]:
ra = row.get ("RAJ2000", "")
dec = row.get("DEJ2000", "")
try:
h, m, s = [float(x) for x in ra.replace(":", " ,").split ()]
ra_deg = 15.0 * (h + m / 60.0 + s / 3600.0)
sign = -1.0 if dec.strip().startswith("-") else 1.0
d, dm, ds = [float(x) for x in dec.replace(":", ", ").split
O]
dec_deg = sign * (abs(d) + dm / 60.0 + ds / 3600.0)
return ra_deg, dec_deg
except Exception:

return None

def load_bsc_for_positions(path: Path) -> Optional[List[Tuple[float
, float, strlll:
W
Light -weight BSC loader for positional fallback: returns 1list
of (ra_deg, dec_deg, name).
o
if not path.exists():

return None

rows = []
with open(path, "r", encoding="utf-8", newline="") as f:
reader = csv.DictReader(filter (lambda 1ln: not 1ln.startswith
("#") and ln.strip(), f), delimiter="[|")

for row in reader:
name = (row.get("Name") or "").strip()
if not name:

continue

Page 111 of

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

APPENDIX A. ADDITIONAL MATERIAL 112

radec = _parse_radec_from_bsc(row)
if radec is None:
continue
ra_deg, dec_deg = radec
rows.append ((ra_deg, dec_deg, name))
print (f"Loaded {len(rows)} BSCLentries_ with_ positions, fory
fallback naming")

return rows

def apply_name_lookup(
catalog: List[CatalogStar],
gaia_to_hip_map: Optional[Dict[int, int]] = None,
iau_name_map: Optional[Dict[int, str]] = None,
) -> None:
o
Replace catalog names with IAU proper names when possible;
otherwise keep/format Gaia IDs.
1) If the catalog name is a Gaia id and gaia_to_hip_map has a
mapping, treat it as HIP for IAU lookup.
2) For HIP ids: prefer IAU proper names.
3) If no IAU name was assigned and we have a Gaia id, label
as ’Gaia####’.
4) Otherwise leave the existing name (e.g., HIP####) .
gaia_to_hip_map = gaia_to_hip_map or {}
replaced = 0
for star in catalog:
hip_val = _parse_hip_from_name(star.name)

gaia_val = _parse_gaia_from_name(star.name)

if gaja_val is not None and gaia_val in gaia_to_hip_map:

hip_val = gaia_to_hip_map[gaia_vall]

Page 112 of

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

APPENDIX A. ADDITIONAL MATERIAL 113

assigned = False
if hip_val is not None and iau_name_map:
new_name = iau_name_map.get(hip_val)
if new_name:
if new_name != star.name:
replaced += 1
star.name = new_name

assigned = True

if not assigned and gaia_val is not None:
label = f"Gaia{gaia_vall}"
if label != star.name:
replaced += 1
star.name = label

print (f"Applied name lookup to {replaced} catalog ,entries")

def detect_stars(image_gray: np.ndarray, options: ProcessingOptions
, mask: Optional [np.ndarray] = None,
debug_images: Optional[Dict[str, np.ndarray]] =
None) -> List[DetectedStar]:

Hybrid detector:
combines saturated-blob detection for very bright stars with
background -subtracted detection for faint stars.
nmn
if image_gray.ndim != 2:

raise ValueError("detect_stars expects_aysingle-channel(

grayscale) image.")

mask_bool = None

Page 113 of

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

APPENDIX A. ADDITIONAL MATERIAL 114

if mask is not None:
if mask.shape != image_gray.shape:
raise ValueError ("Mask shape must_ match image.")
mask_bool = mask.astype(bool)
if debug_images is not None:
debug_images ["step_mask"] = mask_bool.astype(np.uint8)
* 255
if debug_images is not None:

debug_images["step_input_gray"] = image_gray.copy ()

Path 1: saturated stars on the raw image (e.g., Antares)
Anything above the saturation threshold in the original image
counts as a star;

skip background subtraction to preserve bright cores.

sat_thresh = int(np.clip(options.saturated_threshold, 0, 255))
_, binary_saturated = cv2.threshold(image_gray, sat_thresh,
2565, cv2.THRESH_BINARY)
if mask_bool is not None:
binary_saturated = cv2.bitwise_and(binary_saturated,

mask_bool.astype(np.uint8))

Path 2: faint-star detection using background subtraction

work = image_gray.astype(np.float32)
if mask_bool is not None:

work = np.where(mask_bool, work, 0.0)
if debug_images is not None:

debug_images["step_masked_gray"] = work.copy()

Force background subtraction for the faint path unless

explicitly disabled

Page 114 of

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

APPENDIX A. ADDITIONAL MATERIAL 115

if options.background_subtraction:
Ensure the kernel is large enough (minimum 51) and odd
k = max(options.background_kernel, 51)
if k % 2 == 0:

kK += 1

bg = cv2.medianBlur (image_gray, k)

work = work - bg.astype(np.float32)

if debug_images is not None:
debug_images["step_background"] = bg

debug_images ["step_after_bg_sub"] = work.copy()

if options.normalize:
work -= work.min ()
max_val = work.max ()
if max_val > O:
work /= max_val
if debug_images is not None:

debug_images["step_after_norm"] = work.copy ()

Threshold selection for faint detections

mean, std = cv2.meanStdDev (work)

mean_val = float(mean[0][0])

std_val = float(std[0][0])

thresh_val = mean_val + options.threshold_multiplier * std_val

if debug_images is not None:
debug_images["step_stats_mean_std"] = np.array([[mean_val,

std_vall]l, dtype=np.float32)

if options.normalize:
_, binary_faint = cv2.threshold(work, thresh_val, 255, cv2.
THRESH_BINARY)

else:

Page 115 of

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

APPENDIX A. ADDITIONAL MATERIAL

116

_, binary_faint = cv2.threshold(work, thresh_val, 255, cv2.

THRESH_BINARY)

binary_faint = binary_faint.astype(np.uint8)
if mask_bool is not None:
binary_faint = cv2.bitwise_and(binary_faint, mask_bool.
astype(np.uint8))
if debug_images is not None:

debug_images["step_binary_faint"] = binary_faint.copy()

Step 3: merge saturated + faint detections (bitwise OR)

final_binary = cv2.bitwise_or(binary_saturated, binary_faint)
if mask_bool is not None:
final_binary = cv2.bitwise_and(final_binary, mask_bool.
astype(np.uint8))
if debug_images is not None:
debug_images ["step_binary_saturated"] = binary_saturated.
copy O)

debug_images["step_binary_final"] = final_binary.copy()

Clean up small noise

if options.morph_open:

kernel_size = max(l, options.morph_kernel)
kernel = np.ones ((kernel_size, kernel_size), np.uint8)
iterations = max(l, options.morph_iterations)

final_binary = cv2.morphologyEx(final_binary, cv2.
MORPH_OPEN, kernel, iterations=iterations)

if debug_images is not None:

debug_images["step_binary_final_open"] = final_binary.

copy O)

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

APPENDIX A. ADDITIONAL MATERIAL 117

num_labels, labels, stats, centroids = cv2.

connectedComponentsWithStats (final_binary)

H, W = image_gray.shape

detections: List[DetectedStar] = []

Safety: if max_area is unset, allow very large blobs for
bright stars

safe_max_area = options.max_area if options.max_area is not

None else 100000

for label in range(l, num_labels):

X, y, w, h, area = stats[labell]

if options.min_area is not None and area < options.min_area

continue

cx, cy = centroids[labell

Measure flux on the original image (not the background-

subtracted one)

r = int(math.sqrt(area)/2) + 2

r = min(r, 40) # cap radius
x0 = max(int(cx) - r, 0)
x1 = min(int(cx) + r + 1, W)

|
H
o
N\

y0 max (int (cy)

+
La]
+
—
ja]
~

yl = min(int(cy)

patch = image_gray[yO:yl, x0:x1]

if patch.size == 0:

Page 117 of

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

APPENDIX A. ADDITIONAL MATERIAL 118

continue

patch_max = int(patch.max()) if patch.size else O

is_saturated_blob = patch_max >= sat_thresh

if area > safe_max_area and not (options.
allow_oversized_saturated and is_saturated_blob):

continue

Weighted centroid
weights = patch.astype(float)

s = weights.sum()

if s <= 0:
det = DetectedStar (x=cx, y=cy, flux=float(area))
else:

yy, xx = np.mgrid[y0:y1l, x0:x1]

cx_refined (xx * weights).sum() / s

cy_refined = (yy * weights).sum() / s

det = DetectedStar (x=cx_refined, y=cy_refined, flux=s)
detections.append (det)
detections.sort (key=lambda d: d.flux, reverse=True)
if options.max_stars and len(detections) > options.max_stars:

detections = detections[:options.max_stars]

print (£"DEBUG: Found {len(detections) }stars. Brightest flux: {

detections [0].flux_,if detections else 0}")

return detections

Page 118 of |140

APPENDIX A. ADDITIONAL MATERIAL 119

ss58 |def processing_preset(mode: str) -> ProcessingOptions:

859 """Set default options for simulation (low noise) versus real
data."""

860 mode = (mode or "real").lower ()

861 if mode == "simulation":

862 return ProcessingOptions(

863 background_subtraction=False,

864 background_kernel=31,

865 normalize=True,

866 threshold_multiplier=4.0,

867 morph_open=False,

868 min_area=1,

869 max_area=800,

870 max_stars=150,

871)

872 # default: noisier real data

873 return ProcessingOptions ()

874

875

876 |# - —---- - e e -

877 |# Pixels -> unit vectors
878 [# - ------mmm e -

s79 |def pixels_to_unit_vectors(detections: List[DetectedStar],

880 image_shape: Tuplel[int, int],

881 hardware_params: Optional[Dict[str,
float]] = None) -> None:

882 R

883 Convert pixel detections into unit vectors using the Juno

camera parameters,

884 correcting for any resizing applied to the screenshot.

885 hardware_params can override res_x/res_y/cx/cy/efl/pixel pitch.
886 e

887 H_img, W_img = image_shape

888

Page 119 of

APPENDIX A. ADDITIONAL MATERIAL 120

889 params = dict (JUNO_HARDWARE_PARAMS)

890 if hardware_params:

891 params .update (hardware_params)

892

893 # 1. Compute scale factor between screenshot and physical
sensor

894 # Assume the aspect ratio is roughly preserved.

895 scale_x = W_img / params["res_x"]

896 scale_y = H_img / params["res_y"]

897

898 # Warn if aspect ratio is strongly distorted (stretched

screenshot)

899 if abs(scale_x - scale_y) > 0.05:

900 print (£"WARNING: Aspectyratiolooksoff! X-scale={scale_x
:.2f}, ,Y-scale={scale_y:.2f}")

901

902 # 2. Compute hardware fx/fy

903 fx_hard = params["efl_um"] / params["pixel_x_um"] # 72326 px

904 fy_hard = params["efl_um"] / params["pixel_y_um"] # 72410 px

905

906 # 3. Scale to the screenshot dimensions

907 fx = fx_hard * scale_x

908 fy = fy_hard * scale_y

909 cx = params["cx_hardware"] * scale_x

910 cy = params["cy_hardware"] * scale_y

911 kappa = params["kappa"] # Distortion coefficient

912

913 print (£"DEBUG: Juno hardware_ scalecorrection: {scale_x:.3f}x")
914 print (£"uuuuuwuUsing fx={fx:.1f} ,(wasy{fx_hard:.1£f3}) , cx={cx:.1

f}u(wasy{params [’ cx_hardware’]})")

915

916 for det in detections:
917 # Pinhole model (with center correction and non-square
pixels)

Page 120 of

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

APPENDIX A. ADDITIONAL MATERIAL

121

Image: x right, y down. Camera frame: y often up, =z

forward.

Step A: center and normalize with focal length

x_norm = (det.x - cx) / fx

y_norm = -(det.y - cy) / fy # invert Y to map image to
camera frame

if STAR_MIRROR_X_IN_RAYS:
x_norm *= -1.0 # mirror camera-x so geometry matches

without flipping the image

Step B: distortion correction (inverse approximation for

small kappa)

r2 = X_norm**2 + y_normx*x*2

if kappa != 0.0:
factor = 1.0 - kappa * r2
x_norm *= factor

y_norm *= factor

z =1.0
v = np.array([x_norm, y_norm, z], dtype=np.float64)

v /= np.linalg.norm(v)

det.ray_cam = v

def build_catalog_pair_table(catalog: List[CatalogStar],
max_pairs: int = 5000,

angle_bin_deg: float = 0.01):

Compute pairwise angles between the brightest catalog stars.

Page 121 of

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

APPENDIX A. ADDITIONAL MATERIAL

122

Returns:

bins: dict bin_index -> list of (idxl, idx2, angle_rad)

angle_bin_rad: bin size in radians
choose N such that N(N-1)/2 ~ max_pairs
N = min(len(catalog), int(0.5 * (1 + math.sqrt(l + 8 x
max_pairs))))
N = max (3, N)
angle_bin_rad = math.radians(angle_bin_deg)
bins: Dict[int, List[Tuple[int, int, floatl]] = {}
for i in range(N - 1):
vi = catalogl[i].vec_inertial
for j in range(i + 1, N):
vj = cataloglj].vec_inertial
cosang = float(mp.clip(np.dot(vi, vj), -1.0, 1.0))
ang = math.acos(cosang)
b = int(ang / angle_bin_rad)
bins.setdefault (b, []).append((i, j, ang))

return bins, angle_bin_rad

TRIAD: snelle attitude uit 2 vectorparen

def triad_attitude(v_cam: np.ndarray, w_cam: np.ndarray,

v_inertial: np.ndarray, w_inertial: np.ndarray)

-> np.ndarray:
""MTRIAD: return R (3x3) mapping camera -> inertial frame.
Camera triad

vl

v_cam / np.linalg.norm(v_cam)
wl = w_cam / np.linalg.norm(w_cam)
tl_cam = vl

t2_cam = np.cross(vl, wl)

Page 122 of

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

APPENDIX A. ADDITIONAL MATERIAL 123

n2 = np.linalg.norm(t2_cam)
if n2 < 1le-6:
raise ValueError ("TRIAD: camera,vectors_are_ nearly_ colinear
)
t2_cam /= n2
t3_cam = np.cross(tl_cam, t2_cam)

C_cam = np.column_stack((tl_cam, t2_cam, t3_cam))

Inertial triad
v2 = v_inertial / np.linalg.norm(v_inertial)

w2 = w_inertial / np.linalg.norm(w_inertial)

|

tl_in = v2
t2_in = np.cross(v2, w2)
n2 = np.linalg.norm(t2_in)
if n2 < le-6:
raise ValueError ("TRIAD: inertial vectors are nearly
colinear.")
t2_in /= n2
t3_in = np.cross(tl_in, t2_in)

C_in = np.column_stack((tl_in, t2_in, t3_in))

R: camera -> inertiaal
R = C_in @ C_cam.T

return R

def wahba_davenport_q(camera_vecs: np.ndarray,
inertial_vecs: np.ndarray,
weights: Optional [np.ndarray] = None) -> unp.

ndarray:

Page 123 of

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

APPENDIX A. ADDITIONAL MATERIAL

124

Solve Wahba’s problem using Davenport’s (Q method.

camera_vecs: (N,3)
inertial_vecs: (N,3)
mnn

if weights is None:

weights = np.ones(camera_vecs.shape[0], dtype=np.float64)

=
I

np.diag(weights)

[o9]
I

camera_vecs.T @ W @ inertial_vecs
S =B + B.T

sigma = np.trace(B)

Z = np.array ([

B[1, 2] - B[2, 11,

B[2, 0] - B[O, 2],

B[O, 11 - BI[1, 01,

], dtype=np.float64)

K = np.zeros((4, 4), dtype=np.float64)

K[:3, :3] = S - sigma * np.eye(3)

K[:3, 3] Z

K[3, :3]

Z

K[3, 3] = sigma

eigvals, eigvecs = np.linalg.eigh(K)
q = eigvecs[:, np.argmax(eigvals)] # largest eigenvalue
q_vec = ql[:3]

q0 = ql[3]

Normalize quaternion

ax, qy, 9z = q._vec

norm_q = math.sqrt(qO0*q0 + qx*qgx + qy*qy + qz*qz)
if norm_q == O0:

raise RuntimeError ("Zero ,quaternion in Wahba solution.")

Page 124 of

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

APPENDIX A. ADDITIONAL MATERIAL

125

q0 /= norm_q
gx /= norm_q
qy /= norm_q

qz /= norm_q

Quaternion -> rotatiematrix
R = np.array ([
[1 - 2%(qy**2 + qz*x2), 2*x (gqx*qy - qz*q0),
qx*qz + qy*q0)1],
[2*x(qx*qy + qz*q0), 1 - 2% (qgx**2 + qz**2),
qQy*qz - qx*q0)1],
(2% (qx*qz - qy*q0), 2*x(qy*qz + qx*q0),
2% (gqx**2 + qy**2)],

], dtype=np.float64)

return R

def attitude_from_star_pairs_ransac(

detections: List[DetectedStar],
catalog: List[CatalogStar],
pair_table,

angle_bin_rad: float,
max_iterations: int = 500,
max_inlier_err_deg: float = 0.2,

min_inliers: int = 8,

Estimate attitude with RANSAC:

- compare angles between detected star pairs to catalog

Page 125 of

2% (

2% (

pairs

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

APPENDIX A. ADDITIONAL MATERIAL

126

- build hypotheses via TRIAD
- score on inlier count
- refine best solution with Davenport Q
RN
bins = pair_table
cam_vecs = np.array([d.ray_cam for d in detections])
if cam_vecs.shape[0] < 2:
raise RuntimeError ("Need at, least 2, ,detections for attitude

'll)

cat_vecs = np.array([c.vec_inertial for c¢ in catalog])
max_inlier_err_rad = math.radians(max_inlier_err_deg)

cos_max_err = math.cos(max_inlier_err_rad)

best_inliers: List[Tuple[int, int]] = []

best_R = None

Precompute all detection pairs
M = len(detections)
det_pairs = []
for i in range(M - 1):
for j in range(i + 1, M):

vi = cam_vecs[i]

vj cam_vecs [j]
cosang = float(mp.clip(mp.dot(vi, vj), -1.0, 1.0))
ang = math.acos(cosang)

det_pairs.append ((i, j, ang))

if not det_pairs:

raise RuntimeError ("No, detection pairs, found.")

import random
for _ in range(max_iterations):

Pick a random detection pair

Page 126 of

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

APPENDIX A. ADDITIONAL MATERIAL 127

i_det, j_det, ang_det = random.choice(det_pairs)
bin_idx = int(ang_det / angle_bin_rad)
candidate_pairs = []
for b in (bin_idx - 1, bin_idx, bin_idx + 1):

if b in binmns:

candidate_pairs.extend(bins[b])

if not candidate_pairs:

continue
i_cat, j_cat, _ = random.choice(candidate_pairs)
Try both mappings (i->i_cat, j->j_cat) and swapped
for mapping in [((i_det, i_cat), (j_det, j_cat)),

((i_det, j_cat), (j_det, i_cat))]:

(i1, c1), (i2, c2) = mapping

v_caml = cam_vecs[il]

v_cam2 = cam_vecs[i2]

v_catl = cat_vecs[c1]

v_cat2 = cat_vecs[c2]

try:

R = triad_attitude(v_caml, v_cam2, v_catl, v_cat2)

except ValueError:

continue

Score hypothesis

inliers: List[Tuple[int, int]] = []
for k, v_cam in enumerate (cam_vecs):
v_in = R @ v_cam
dots = cat_vecs @ v_in
idx = int(np.argmax(dots))

if dots[idx] >= cos_max_err:

inliers.append ((k, idx))
if len(inliers) > len(best_inliers):

best_inliers = inliers

Page 127 of

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

APPENDIX A. ADDITIONAL MATERIAL

128

best_R R
if best_R is None or len(best_inliers) < min_inliers:
raise RuntimeError ("RANSAC ,could_ not,find ja ,consistent,,

attitude.")

Refine with Wahba on all inliers

cam_list = np.array([detections[i].ray_cam for (i, _) in
best_inliers])

in_list = np.array([catalogl[j]l.vec_inertial for (_, j) in
best_inliers])

R_refined = wahba_davenport_q(cam_list, in_list)

return R_refined, best_inliers

def debug_residuals(R: np.ndarray,

detections: List[DetectedStar],

catalog: List[CatalogStar],

inliers: List[Tuple[int, int]]) -> None:
"""Print median/max angular residuals in degrees for matched

stars."""

import numpy as np # local to keep global imports light
errs = []

for det_idx, cat_idx in inliers:

v_cam = detections[det_idx].ray_cam
v_cat = cataloglcat_idx].vec_inertial
v_pred = R @ v_cam

cosang = float(np.clip(np.dot(v_pred, v_cat), -1.0, 1.0))
err = math.degrees (math.acos(cosang))
errs.append (err)
if not errs:
print ("Residuals: none (no inliers).")

return

Page 128 of

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

APPENDIX A. ADDITIONAL MATERIAL 129

print (f"Residuals: median={np.median(errs):.3f} deg, ymax={max(

errs):.3f} deg, N={len(errs)}")

def match_all_detections(R: np.ndarray,
detections: List[DetectedStar],
catalog: List[CatalogStar],
max_err_deg: float = 0.3) -> List[Tuplel
int, intll:
"""Match remaining detections to nearest catalog star within
angular threshold."""
import numpy as np

if not detections:

return []

cat_vecs = np.array([c.vec_inertial for ¢ in catalog]l)
max_err_rad = math.radians(max_err_deg)

cos_min = math.cos(max_err_rad)

extra_matches = []

for i, det in enumerate (detections):
if det.catalog_idx is not None:
continue

v_cam = det.ray_cam

v_in R @ v_cam

dots = cat_vecs @ v_in

idx = int(np.argmax(dots))

if dots[idx] >= cos_min:
det.catalog_idx = idx

extra_matches.append ((i, idx))

return extra_matches

Boresight RA/Dec

Page 129 of |140

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

APPENDIX A. ADDITIONAL MATERIAL

130

def rotation_to_boresight_radec(R: np.ndarray) -> Tuple[float,
float]:
"""Return RA/Dec of the camera z-axis (boresight)."""

boresight_cam = np.array([0.0, 0.0, 1.0], dtype=np.float64)

v = R @ boresight_cam
X, ¥, 2 =V
dec = math.degrees(math.asin(z))

ra = math.degrees(math.atan2(y, x))
if ra < 0:
ra += 360.0

return ra, dec

def annotate_image (
image_bgr: np.ndarray,
detections: List[DetectedStar],
catalog: List[CatalogStar],
matches: List[Tuplel[int, int]],
boresight_radec: Tuple[float, float],
) -> np.ndarray:
"""Draw circles and labels for matched stars."""
out = image_bgr.copy ()
for det_idx, cat_idx in matches:
det = detections[det_idx]
star = cataloglcat_idx]

center = (int(round(det.x)), int(round(det.y)))

cv2.circle(out, center, 5, (0, 255, 0), 1, lineType=cv2.

LINE_AA)

Page 130 of

APPENDIX A. ADDITIONAL MATERIAL 131

1236 label = star.name

1237 cv2.putText (out,

1238 label,

1239 (center [0] + 6, center[1] - 3),

1240 cv2.FONT_HERSHEY_SIMPLEX,

1241 0.35,

1242 (0, 255, 0),

1243 1,

1244 lineType=cv2.LINE_AA)

1245

1246 ra_deg, dec_deg = boresight_radec

1247 txt = f"Pointing:_ RA={ra_deg:7.3f}_ deg, Dec={dec_deg:6.3f} ,deg"

1248 cv2.putText (out,

1249 txt,

1250 (20, 30),

1251 cv2.FONT_HERSHEY_SIMPLEX,

1252 0.6,

1253 (0, 255, 255),

1254 2,

1255 lineType=cv2.LINE_AA)

1256 return out

1257

1258

1250 |def annotate_detections_only(

1260 image_bgr: np.ndarray,

1261 detections: List[DetectedStar],

1262 header: str = "ATTITUDE_,FAILED",

1263 |) -> np.ndarray:

1264 """Overlay raw detections (no catalog matches) so failures are
inspectable. """

1265 out = image_bgr.copy ()

1266 for i, det in enumerate(detections):

1267 center = (int(round(det.x)), int(round(det.y)))

Page 131 of

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

APPENDIX A. ADDITIONAL MATERIAL

132

cv2.circle(out, center, 5, (0, 255,
LINE_AA)

cv2.putText (
out ,
fr{i+1}",
(center [0] + 6, center[1] - 3),
cv2.FONT_HERSHEY_SIMPLEX,
0.35,
(0, 255, 0),
1,
lineType=cv2.LINE_AA,

)

if header:

cv2.putText (
out ,
header,
(20, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(0, 0, 255),
2,
lineType=cv2.LINE_AA,

)

return out

def run_star_tracker(
image_path: str,
catalog_path: str,

max_catalog_mag: float = 8.0,

Page 132 of

0))

1,

lineType=cv2.

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

APPENDIX A. ADDITIONAL MATERIAL

133

output_path: str = "annotated.png',

processing_options: Optional [ProcessingOptions] = None,
image_config: Optional[ImageInputConfig] = None,
camera_params_override: Optional[Dict[str, float]] = None,
denoise_config: Optional[DenoiseConfig] = None,

detection_mask: Optional [np.ndarray] = None,

Full pipeline: image -> attitude -> annotation.
img_stem = Path(image_path).stem
debug_dir = STAR_DEBUG_DIR / img_stem if

STAR_SAVE_DEBUG_INTERMEDIATES else None

Load image + optional resize/rotate
cfg = image_config or ImagelnputConfig(path=image_path)
img_bgr = cv2.imread(cfg.path, cv2.IMREAD_COLOR)
if img_bgr is None:

raise RuntimeError (f"Could_ notyreadimage {cfg.path}")
if STAR_FLIP_CODE is not None:

img_bgr = cv2.flip(img_bgr, STAR_FLIP_CODE)

print(f”DEBUG:uInputuimageuflippeducode={STAR_FLIP_CODE}”)

if cfg.resize_to:

w, h = cfg.resize_to

img_bgr = cv2.resize(img_bgr, (w, h), interpolation=cv2.

INTER_LINEAR)
print (£"DEBUG: ,Input,image resized to {wtx{h}")

if abs(cfg.rotate_deg) > le-6:

img_bgr = _rotate_image_keep_size(img_bgr, cfg.rotate_deg)

print (£"DEBUG: ,Input image rotated_ {cfg.rotate_deg:.2f} deg

LCCW™)
img_gray = cv2.cvtColor (img_bgr, cv2.COLOR_BGR2GRAY)
if denoise_config is not None:

img_gray = clean_image(img_gray, denoise_config)

Page 133 of

APPENDIX A. ADDITIONAL MATERIAL 134

1332 if detection_mask is not None:

1333 if detection_mask.shape != img_gray.shape:

1334 raise ValueError ("Detection mask shape must_ match image

)

1335 detection_mask = detection_mask.astype(bool)

1336 else:

1337 detection_mask = None

1338

1339 # Catalog (Yale ASCII or Gaia CSV)

1340 if catalog_path.lower () .endswith(".csv"

1341 catalog = load_gaia_csv(catalog_path, max_mag=
max_catalog_mag)

1342 else:

1343 catalog = load_yale_bsc_ascii(catalog_path, max_mag=
max_catalog_mag)

1344

1345 # Name replacement: prefer IAU names (via HIP), otherwise Gaia

IDs
1346 gaia_to_hip = load_gaia_to_hip_map (STAR_NAME_LOOKUP_PATH) if

STAR_NAME_LOOKUP_PATH.exists () else {}

1347 iau_name_map = load_iau_names (STAR_IAU_PATH)

1348 apply_name_lookup (catalog, gaia_to_hip_map=gaia_to_hip,
iau_name_map=iau_name_map)

1349

1350 if processing_options is None:

1351 processing_options = ProcessingOptions ()

1352 print (f"Processing options: {processing_optionsl}")

1353

1354 # Star detection

1355 debug_images = {} if STAR_SAVE_DEBUG_INTERMEDIATES else None
1356 detections = detect_stars(img_gray, options=processing_options,

mask=detection_mask, debug_images=debug_images)

1357 if debug_images is not None:

Page 134 of

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

APPENDIX A. ADDITIONAL MATERIAL

135

_write_debug_images (f"{img_stem}_detect_main",

, out_dir=debug_dir)

print (f"Detected {len(detections) } star candidates")

Retry with more sensitive preset if detections are too few

if len(detections) < STAR_ATTITUDE_MIN_INLIERS:

debug_images

print (£"INFO:only_ {len(detections)} detections; retrying,

with a more_ sensitive preset")

fallback_opts = ProcessingOptions(

)

background_subtraction=True,

background_kernel=max (processing_options.
background_kernel, 71),

normalize=True,

threshold_multiplier=1.25,

morph_open=False,

morph_kernel=processing_options.morph_kernel,

morph_iterations=processing_options.morph_iterations,

min_area=3,

max_area=processing_options.max_area,

max_stars=400,

saturated_threshold=min(processing_options.
saturated_threshold, 215),

allow_oversized_saturated=True,

debug_images_fb = {} if STAR_SAVE_DEBUG_INTERMEDIATES else

None

detections = detect_stars(img_gray, options=fallback_opts

mask=detection_mask, debug_images=debug_images_£fb)

if debug_images_fb is not None:

_write_debug_images (f"{img_stem}_detect_fallback",

debug_images_fb, out_dir=debug_dir)

print (f"Detected {len(detections) }star candidatesaftery

fallback")

if len(detections) < 2:

Page 135 of

H

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

APPENDIX A. ADDITIONAL MATERIAL 136

print ("WARN:_ Insufficient detections(<2) even aftery
fallback;uwritingudetections—onlyuoverlay.”)

annotated_fail = annotate_detections_only(img_bgr,
detections, header="ATTITUDE_ FAILED: too,few, ,detections"
)

cv2.imwrite (output_path, annotated_fail)

return

Pixels -> 3D rays
pixels_to_unit_vectors (detections, img_gray.shape,

hardware_params=camera_params_override)

Catalog pairs

pair_table, angle_bin_rad = build_catalog_pair_table(catalog)

Attitude via RANSAC + TRIAD + Davenport
min_inliers = max(2, min(STAR_ATTITUDE_MIN_INLIERS, len(

detections)))

try:

R, inliers = attitude_from_star_pairs_ransac(
detections, catalog, pair_table, angle_bin_rad,
max_iterations=STAR_ATTITUDE_MAX_ITER,
max_inlier_err_deg=STAR_ATTITUDE_MAX_ERR_DEG,
min_inliers=min_inliers,

)

except Exception as exc:
print (f"ATTITUDE_ FAILED: {excl}")
annotated_fail = annotate_detections_only(img_bgr,
detections, header="ATTITUDE_ FAILED")
cv2.imwrite (output_path, annotated_fail)
return
print (f"Foundattitude with {len(inliers)} inliers")

debug_residuals (R, detections, catalog, inliers)

Page 136 of

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

APPENDIX A. ADDITIONAL MATERIAL 137

def

extra_matches = match_all_detections(R, detections, catalog,
max_err_deg=max (STAR_ATTITUDE_MAX_ERR_DEG, 0.3))

all_matches = inliers + extra_matches

Attach matches to detections
for det_idx, cat_idx in all_matches:

detections [det_idx].catalog_idx = cat_idx

Boresight RA/Dec
ra_deg, dec_deg = rotation_to_boresight_radec(R)
print (f"Boresight pointing: RA={ra_deg:.3f} deg,,Dec={dec_deg

:.3f},deg")

Annotation
annotated = annotate_image (img_bgr, detections, catalog,
all_matches,
(ra_deg, dec_deg))
cv2.imwrite (output_path, annotated)

print (f"Annotated_ image written to,{output_pathl}")

main () -> None:
processing_opts = STAR_PROCESSING_OPTIONS or processing_preset(
STAR_PROCESSING_MODE)
base_path = STAR_IMAGE_PATH
image_paths: List[Path] = []
if base_path.is_dir():
image_paths = sorted(p for p in base_path.glob("IMD_*.png")
if p.is_file())
elif base_path.exists():
image_paths = [base_path]
elif STAR_IMAGE_FALLBACK.exists():
image_paths = [STAR_IMAGE_FALLBACK]

if not image_paths:

Page 137 of

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

APPENDIX A. ADDITIONAL MATERIAL

138

raise RuntimeError (

f"No,input images found. Tried directory/file {

STAR_IMAGE_PATH} and_ fallback {STAR_IMAGE_FALLBACK}"

print (f"Processing_ {len(image_paths)} image(s)")
for image_path in image_paths:
print (£"->_ {image_path}")
image_cfg = ImageInputConfig(
path=str (image_path),
rotate_deg=STAR_ROTATE_DEG,
resize_to=STAR_RESIZE_TO,

)

Build mask that keeps the overlap region and removes

borders
mask = _load_precomputed_mask (image_path)
gray_for_mask = None

if mask is None:
if STAR_AUTO_OVERLAP_MASK:
gray_for_mask = cv2.imread(str(image_path),
IMREAD_GRAYSCALE)

if gray_for_mask is None:

cv2.

raise RuntimeError (£"Could_ not,read image fory

mask:_ {image_path}")
mask = _quadrilateral_mask_from_image (

gray_for_mask,

thresh_percentile=STAR_AUTO_MASK_PERCENTILE,

close_kernel=STAR_AUTO_MASK_CLOSE_KERNEL,

erode_px=STAR_AUTO_MASK_ERODE,

)
if STAR_SAVE_DEBUG_INTERMEDIATES:
_write_debug_images ("mask_build", {"auto_mask":
mask, "input_for_mask": gray_for_mask})

elif STAR_MASK_BORDERS_PX:

Page 138 of

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

APPENDIX A. ADDITIONAL MATERIAL 139

top, bottom, left, right = STAR_MASK_BORDERS_PX
gray_for_mask = cv2.imread(str(image_path), cv2.
IMREAD_GRAYSCALE)
if gray_for_mask is None:
raise RuntimeError (£"Could not,read image fory
mask:_ {image_path}")

H, W

gray_for_mask.shape
mask = np.zeros((H, W), dtype=np.uint8)

mask[top : H - bottom, left : W - right] = 1

Optional Jupiter/glare mask; combine and save for preview
if STAR_SAVE_JUPITER_MASK:
if gray_for_mask is None:
gray_for_mask = cv2.imread(str(image_path), cv2.
IMREAD_GRAYSCALE)
if gray_for_mask is not None:
glare_mask = _compute_jupiter_mask(gray_for_mask)
Save glare mask for preview (even if None -> save
all zeros)
STAR_DEBUG_DIR.mkdir (parents=True, exist_ok=True)
glare_path = STAR_DEBUG_DIR / f"{image_path.stem}
_jupiter_mask.png"
if glare_mask 1is None:
blank = np.zeros_like(gray_for_mask, dtype=np.
uint8)
cv2.imwrite(str(glare_path), blank)
else:
cv2.imwrite(str(glare_path), glare_mask * 255)
Apply to detection mask (AND with inverse)
if mask is None:
mask = np.ones_like(glare_mask, dtype=np.
uint8)
mask = (mask.astype(np.uint8) & (1 - glare_mask

) .astype(np.uint8)) .astype(np.uint8)

Page 139 of

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

APPENDIX A. ADDITIONAL MATERIAL 140

if

if STAR_SAVE_DEBUG_INTERMEDIATES:
overlay = _make_overlay(glare_mask * 255,
_to_uint8_debug(gray_for_mask))
cv2.imwrite (str (STAR_DEBUG_DIR / f"{
image_path.stem}_jupiter_mask_overlay.

png"), overlay)

output_path = image_path.with_name(f"{image_path.stem}
_annotated.png")

run_star_tracker (
image_path=str (image_path),
catalog_path=str (STAR_CATALOG_PATH),
max_catalog_mag=STAR_MAX_CATALOG_MAG,
output_path=str (output_path),
processing_options=processing_opts,
image_config=image_cfg,
camera_params_override=STAR_CAMERA_OVERRIDE,
denoise_config=STAR_DENOISE_SETTINGS if APPLY_DENOISING

else None,

detection_mask=mask,

__name__ == "__main__

main ()

Listing A.2: Star tracker script

Page 140 of

	Introduction
	JUNO Mission
	Problem statement
	Research goals

	Background and Data
	Juno ASC's camera
	Dataset description
	SPICE toolkit

	Image Processing
	Radiometric Calibration
	Dark frame subtraction
	Residual sensor artifacts

	External Noise Mitigation
	Radiation noise characterization
	Gradient-based filtering

	Despinning
	Odd/even field decomposition
	Rotation alignment and merge

	Lens Distortion Correction
	Mathematical model
	Distortion magnitude determination

	Performance Benchmark
	Implementation
	Onboard feasibility analysis

	Final Output

	Horizon Detection
	Problem statement & Motivation
	Gradient-based Edge Tracking
	Circle Fitting Method
	Validity of local circle approximation
	Algorithm selection and validation

	Comparison with SPICE output
	Conclusions

	Star Mapping
	Star Detection
	Dual mask construction
	Centroid extraction

	Star Catalogue
	Catalogue selection
	Negligibility of Parallax effects
	Inertial vector conversion

	Attitude Estimation
	Pattern ambiguity
	Camera ray projection
	Fast candidate search
	Robust solver (RANSAC/Wahba)
	Boresight calculation
	Mapping results

	Applications
	Juno's position vector
	Constructing the position vector
	Consistency checks
	Transforming to Jupiter-centric coordinates

	Atmospheric Investigation
	Spatial resolution
	Validation of thermosphere detection

	Discussion and Conclusions
	Discussion
	What works best for this Juno dataset
	Limitations and sources of error

	Conclusions
	Main findings
	Recommendations for future work

	Additional Material
	Star recognition output from whole dataset
	Source Code
	Main script
	Star tracker script

